立教大学大学院理学研究科物理学専攻 2012年度博士課程前期課程最終試験 概要集

日時 : 2013年2月19日(火)10:00~17:30 20日(水)10:00~15:15

場所 :8号館2階8202教室

発表時間:30分(質疑時間10分含む)

2月19日 10:00 - 17:30

			座長:平山
10:00	- 10:30 局所ローレンツ対称性を破	矢嶋 耕治 するワイル重力によるインフレーション起源の	1 の重力波
10:30	- 11:00 SCRIT実験装置を用いた・	小川原 亮 イオン捕獲特性の探求	3
11:00	- 11:30 SAMURAI–TPC用クロッ	浦野 恭輔 ク位相同期モニターシステムの開発	5
11:30	- 12:00 ²³⁸ Uの飛行核分裂によるロ	村井 大地 Þ性子過剰核の生成断面積の測定	7
		休み(12:00 - 13:15)	
13:15	- 13:45 地磁気共役点オーロラの発	重信 薫 卷光強度比較	座長:田中 9
13:45	- 14:15 中質量連星系の前主系列	清水 佑輔 星θ 1 Ori E のフレア観測	11
14:15	- 14:45 Development of a low e photoelectric effect	小西 達也 nergy electron beam source using the	13
14:45	- 15:15 リングコアフラックスゲ-	植山 祐輔 - ト磁束計のデジタル測定法の開発	15
	1	木憩(15:15 - 15:30)	
			座長:栗田
15:30	- 16:00 Newton-IV号による画像ダ	岸 礼子 処理型変位計を用いた近距離重力実験	17
16:00	- 16:30 移動管法によるキラル分子	齋藤 和幸 Fイオンの移動度の研究	19
16:30	- 17:00 Constraints on the Cha	坂木 泰仁 rged Scalar Effect on $B \rightarrow D^{(*)} \tau \overline{v}_{\tau}$	21
17:00	- 17:30 低速多価イオン衝撃による	秋和 正樹 る希ガス固体からのポテンシャルスパッタリン	23 ング

2月20日 10:00-15:15

			座長:亀田
10:00 - 10:	30	志賀 慶明	25
イン	ビームヶ線核分光のた	こめの位置有感型シンチレーション検出器の	開発
10:30 - 11:	00	松下 慶一郎	27
陽子	線治療における体内・	中での標的原子核破砕反応の研究	
11:00 - 11:	30	戸塚 祐実	28
TRII	JMFにおける時間反	転対称性の破れの探索・MTV実験	
Run	- II の物理解析、及び	CDCセットアップの最終性能評価 (Run-IV)	
11:30 - 12:	00	長谷川 知香	30
超対	称ゲージ理論と局所(比	
	眉	弦休み(12:00 - 13:15)	
			座長:小林
13:15 - 13:	45	詫間 晃	31
不安	定核分解反応測定の7	ための広ダイナミックレンジ増幅回路開発	
13:45 - 14:	15	山元 夢摘	33
惑星	観測を目指した極周[回成層圏望遠鏡の開発	
14:15 - 14:	45	吉田 裕貴	35
すざ	く衛星による低質量〉	〈線連星パルサー GX 1+4 の観測	
14:45 - 15:	15	大六 隼人	37
水星	大気中のナトリウムル	原子密度の時間変動に関する研究	

局所ローレンツ対称性を破るワイル重力によるインフレーション起源の重力波 Inflationary Gravitational Waves in Lorentz-violating Weyl Gravity

矢嶋耕治 指導教員 原田知広

1. はじめに

量子重力理論による量子補正としてアインシュタインの一般相対性理論に高エネルギーの効果を付け加えると いうことが考えられる。ここで考えるワイル重力もそうした理論の一つである。また、インフレーション起源の重 力波を調べるとインフレーション理論の検証ができると期待される。ここではワイル重力理論によるインフレー ション起源の重力波の性質を調べた。

2. 局所ローレンツ対称性を破るワイル重力からの重力波

アインシュタイン-ヒルベルト作用にワイルテンソルの二乗が加わった作用を考える。ワイルテンソル Cabcd は

$$C_{abcd} \equiv R_{abcd} - \frac{2}{n-2} \left\{ g_{a[c} R_{d]b} + g_{b[d} R_{c]a} - \frac{1}{n-1} g_{a[c} g_{d]b} R \right\} \qquad (n \ge 3)$$

と定義される。ここで*n*は時空の次元で[]は反対称化を表す記号である。*R^a_{bcd}*はリーマンテンソル、*R_{ab}*はリッ チテンソル、*R*はスカラー曲率である。よって、ワイルテンソルの二乗の項を加えるということは、*R_{abcd}、R_{ab}*、 *R*の高次の項が付け加わったということである。こうした高次項を付け加えた理論を考えるモチベーションとし ては、様々な量子重力理論による量子補正の効果がある。

しかし、高次項を付け加えると、ゴーストと呼ばれる負の運動項を持った自由度が現れることが知られている。 運動項が負ということはエネルギーがどんどん低い方へ行き −∞ まで行ってしまう。するとこの系は安定ではな くなる。したがってゴーストを生み出す理論というのは好ましくない。

ここでは局所ローレンツ対称性を破るがゴーストを出さないワイル重力を考えた。具体的には次の形の作用を 考える:

$$S[g_{ab},\chi] = \frac{1}{2\kappa} \int d^4x \sqrt{-g} \left(R + 2\gamma C_{abcd} C_{efgh} \gamma^{ae} \gamma^{bf} \gamma^{cg} u^d u^h \right) + S_{\chi}[g_{ab},\chi]$$

ここで

$$\iota_a \equiv \frac{\partial_a \chi}{\sqrt{-\partial_b \chi \partial^b \chi}} \quad \text{and} \quad \gamma_{ab} \equiv g_{ab} + u_a u_b$$

である。c = 1とする。また $\kappa = 8\pi G$ である。 γ の次元は長さの二乗である。いま、 $S_{\chi}[g_{ab}, \chi]$ は任意だが χ のグ ラディエントベクトル $\partial_{a\chi}$ が時間的で未来向きとなるようにとる。つまりベクトル u_{a} が時間の向きを決めてい る。すなわちラグランジアンにはローレンツ共変性があるが、そこから導かれる解は局所ローレンツ共変性を破 る理論であるということである。そして、背景時空を平坦な FLRW 計量として摂動を考えた。摂動を 3 次元空間 の座標変換のもとでの変換性にもとづいてテンソル型、ベクトル型、スカラー型と分解した。

ワイルテンソルの項からくる摂動はテンソル型のみである。アインシュタイン-ヒルベルト作用からくるテン ソル型摂動と合わせてその運動方程式を求めて、γ > 0 であればゴーストにはならないことを確かめた。

次に、インフレーション中に生成される重力波の振る舞いを調べた。インフレーションはまずは簡単のために ド・ジッター膨張をしているモデルを考えた。つまりスケールファクターが $a(t) \propto e^{Ht}$ という膨張をしている場 合である。テンソル型摂動 h_{ii} についての作用は共形時間 $d\eta = dt/a$ を用いて

$$S_T[h_{ij}] = \frac{1}{8\kappa} \int d\eta d^3x \left[a^2 (h'_{ij}h'^{ij} - \partial_k h_{ij}\partial^k h^{ij}) + 4\gamma \partial_k h'_{ij}\partial^k h'^{ij} \right]$$

となる。これから h_{ij} に共役な運動量 π^{ij} を求め、 h_{ij} と π^{ij} を演算子として交換関係を課して量子化した。 h_{ij} を フーリエ成分に展開してさらに重力波の偏極テンソル $e_{ij}^{\lambda}(\vec{k})$ を用いて表すと

$$\hat{h}_{ij}(\eta, \vec{x}) = \sum_{\lambda=1,2} \int \frac{d^3k}{(2\pi)^{3/2}} \left[e_{ij}^{\lambda}(\vec{k}) \, \hat{a}_{\vec{k}}^{\lambda} \, h_k(\eta) \, e^{i\vec{k}\cdot\vec{x}} + \text{h.c.} \right]$$

となる。十分初期(ホライズンの十分内側)では重力波にとって宇宙膨張は無視できるので、通常の場の理論の処 方にしたがって、そこでの正周波数のモードに一致するようにモード関数 *h_k* を求めた。バンチ・デービス真空を

$$\hat{a}_{\vec{k}}^{\lambda}|0\rangle = 0$$

と定義し、重力波 h_{ij} のパワースペクトル $\mathcal{P}(k;\eta)$ を

$$\langle 0|\hat{h}_{ij}(\eta, \vec{x}_1)\hat{h}^{ij}(\eta, \vec{x}_2)|0\rangle = \int d^3k \frac{\mathcal{P}(k;\eta)}{4\pi k^3} e^{i\vec{k}\cdot(\vec{x}_1 - \vec{x}_2)}$$

で定義すると

$$\mathcal{P}(k;\eta) = \frac{k^3}{\pi^2} \left| h_k(\eta) \right|^2$$

となる。

インフレーション中にホライズンを出たモードは $\eta \to 0$ の極限をとって考えると $h_k \propto k^{-3/2}$ と計算されるので、パワースペクトルはスケールによらないことがわかる。これはド・ジッター宇宙におけるアインシュタイン 重力の場合の重力波と同じ振る舞いである。

アインシュタイン重力の重力波と今考えているワイル重力の重力波の振幅の比を Ξ として比較すると、図のようになった。縦軸が Ξ で横軸 $\epsilon \equiv \sqrt{\gamma} H$ はワイル項が効く長さのスケール $\sqrt{\gamma}$ とハッブル長 H^{-1} との比である。 ϵ が小さいほどワイル項が効く長さのスケールが H^{-1} に比べ小さいことを表す。ワイルテンソルの効果が小さい ときにはその比は 1 に近い。これはモードがホライズンを出るまで長くローレンツ対称性の破れの効果が効かず、よってアインシュタイン重力の重力波と同じような振幅になるからである。ワイル項が効くにつれてワイル重力のパワースペクトルの振幅が小さくなることがわかった。

🗵 1: The modification of the power spectrum of the gravitational waves on a de Sitter background

[参考文献]

[1] Nathalie Deruelle et al. Lorentz-violating vs ghost gravitons: the example of Weyl gravity [arXiv:1202.3131]

[2] V.Mukhanov, Physical Foundation of COSMOLOGY, CAMBRIDGE

SCRIT 実験装置を用いたイオン捕獲特性の探究 Research on properties of trapped ions in the SCRIT device

小川原亮

指導教員 栗田和好

1. 背景

近年原子核実験の分野において、不安定核を使用した実験が盛んに行われており、その中でも核構造の探 求については強い関心が持たれている。核構造の理解の為には、正確な電荷密度分布(陽子分布)を調べる必 要があるのだが、それを測定する最も優れた方法である電子散乱実験は未だ不安定核に対して実現されてい ない。一般的に電子散乱実験では十分な統計量を得る為に固定標的を用いて実験を行うが、不安定核が短寿 命であるという本質的な問題から固定標的の作成は極めて困難である。従って、我々は従来の固定標的を用 いた実験とは全く異なる実験方法である SCRIT (Self-Confining Radioactive isotope Ion Target:自己閉 じ込め型 RI イオン標的)法^[1]を開発し、2011 年度までの実験により、SCRIT 法を用いれば不安定核電子散乱 実験が可能であるという成果を得ている^{[2], [3]}。今年度は不安定核生成、分離機構である ERIS(Electron bea m driven RI separator for SCRIT)^[4]から供給された安定核¹³²Xe を用いて SCRIT 実験を行った。本論文では その実験で明らかにされた SCRIT のイオン捕獲特性について述べる。

2. SCRIT(Self-Confining RI Ion Target)法

SCRITとは、電子蓄積リング内で3次元空間的にイオンを捕獲し内部標的を生成する方法である[Figure 1]。 電子ビームの作る負のポテンシャルは横方向のトラップとなり、ビーム軸上に設置された2つの電極で作ら れるミラーポテンシャルは縦方向のトラップとなる。また、標的イオンは電極電圧の操作により入射、捕獲、

掃出しを繰り返している。掃き出され たイオンは、後段の検出器でその成分 等が調べられている。また、残留ガス が標的イオンと同時に捕獲されてし まうので、我々は残留ガスのみを捕獲 する実験も同時に行っている。そして、 そこからバックグラウンドの見積り や残留ガスの捕獲特性を測定してい る。特に今年度は、集団的シンクロト ロン振動の強度に依存する残留ガス の捕獲特性を詳細に調べた。

SCRIT System

我々は、Figure 2の様な SCRIT System と呼ばれる装置を用いて捕獲特性を調べており、Scraper では入射 イオン数、Total Charge Monitor では捕獲後のイオンの全電荷を測定している。**ExB** Ion Analyzer では捕獲 イオンを速度分離し成分や価数分布等を測定している。Electron Loss Monitor は弾性散乱実験のデータか らルミノシティーの絶対値校正を行い、現在はルミノシティーモニターとして活用している。

[Fig. 2 SCRIT System]

3. イオン捕獲特性

¹³³Cs を用いた 2011 年度の実験では、4×10⁸[ions/Cycle]の入射イオン数でルミノシティー1×10²⁷[/cm²/s] であったが、今年度は 1×10⁸[ions/Cycle]の入射イオン数でルミノシティー4×10²⁶[/cm²/s]という倍の効率 での実験に成功した。更に、電子ビームの集団的シンクロトロン振動の強度による残留ガスイオンの捕獲特 性の変化を測定した。Figure 3(a, b)から、振動強度が強いビームでは水素の様な軽いイオンは捕獲が困難で あるという事が分かり、その傾向はシミュレーションでも裏付けられている[Fig. 3 (c)]。今年度我々は、故 意に電子ビームに不安定性を与える事で、SCRIT 中の標的イオンの純度を調整できる可能性を発見した。

[Fig. 3 Effects of electron beam instabilities]

(a, b) 左図の 382. 5MHz のサイドバンド周波数はシンクロトロン振動の強度であり、(a) は(b) よりも約1 00 倍強度が強い。(a, b) 右図は捕獲中の水素(丸点) と酸素(三角点)の存在比の時間発展である。(c) は S CRIT Device のシミュレーション結果であり、半径 1mm の電子ビームに対して集団的シンクロトロン振 動の振幅を 0.1mm(丸点)、0.3mm(三角点)、0.5mm(四角点) と変化させている。計算では、捕獲可能時間 は電荷質量比に強く依存し、Xe⁺は水素に比べ約1000 倍も長い。

参考文献

- [1] M. Wakasugi et al, Phys. Rev. Lett. 100, 164801 (2008)
- [2] T.Suda Prog. Theor. Exp. Phys. 2012 03C008 (2012)
- [3] 玉木聖一 'SCRIT 電子散乱実験におけるルミノシティーの向上'立教大学理学研究科修士論文(2011)
- [4] 小泉浩二 'SCRIT 実験における ISOL の開発' 立教大学理学研究科修士論文 (2011)

SAMURAI-TPC 用クロック位相同期モニターシステムの開発 Development of clock phase monitoring system for SAMURAI TPC

1. はじめに

理化学研究所仁科センターの SAMURAI (Superconducting Analyser for MUlti-particle from Radio Isotopebeam)プロジェクトは巨大なスペクトロ メーターを用いて多粒子を同時に測定することによっ て新たな核物理の調査領域を広げることを目的として いる。SAMURAIスペクトロメーターは超電導双極子磁 石、重粒子検出器、陽子検出器及び中性子検出器から成 り立っており、電磁石は回転する台の上に設置される。 これら装置の効果的な組み合わせにより、SAMURAI システムは様々な研究を可能にしている[1]。

SAMURAI の新たな検出器として現在建設中である SAMURAI-TPC は電磁石のギャップ間に設置し、多粒 子の3次元飛跡トラッキングと粒子識別を大立体角で行 う。SAMURAI-TPC の読み出し回路には General Electronics for TPC(GET)[2]を用いる。このGET では AsAd(ASIC ADC board)と呼ばれるプリアンプ、アナロ グパイプラインバッファ、ADC まで搭載したボードを 使う。AsAd ボード1枚で256パッドの読み出しが1kHz で可能である。SAMURAI-TPC では約12000枚の読み 出しパッドがあるため、約50枚のAsAd ボードで読み だす。GET システムでは最大100MHz のサンプリング で動作することを想定して設計されている。[3]これらの ボードの時間同期を確保することが必須である。我々は このための時間同期モニターシステムを開発してきた。

2. 時間同期モニターシステム概略

時間同期モニターシステムに要求されるのは最大 100MHzのクロック信号を1ns以下の時間分解能で計測 することである。時間同期モニターシステムは信号受信 部、マルチプレクサ及びTDCから成り立っている。GET システムでは最大 30000chの読み出しを予定している ので、最大 128 枚のボードからのタイミングクロック が存在し、Low Voltage Differential Signal(LVDS)規 格で伝送される。受信した信号はマルチプレクサに送 られ、2chを選択しTDCでその時間差を計測する。信 号選択部とTDC はマイクロコントローラ(PIC)を用い て制御し、その結果は PC に転送し可視化して確認す る。(Fig.2)

3. ソフトウェア機能確認ボード

ソフトウェア機能確認ボードを設計製作し、その動 作確認を行った。プラットフォームではマルチプレク サに CMOS ロジック IC である 74HC251(8:1 マルチ プレクサ)を使用し、また規模を最終版の4分の1で ある 32ch の信号に対応している。作成したテスト基

浦野恭輔

Fig.1 Exploded view of the SAMURAI-TPC

Fig.2 Over view of time monitoring system

Fig. 3 Development platform for software

MUX board

板(Fig.3)を用いて動作テストを行った。テストは PIC から位相のずれた 2 本のクロック出力し LVDS 信号へ

変換する。その後、LVDS レシーバへ入力し CMOS ロジック IC で扱えるよう変換を行う。変換したクロッ クは、マルチプレクサを通して TDC へと入力する。TDC は LVTTL で動作するが、CMOS から LVTTL へ の信号入力は問題がないことを確認した。

PIC を用いたマルチプレクサの制御、TDC の操作及び計測データの取得及びそれらの技術を用いて全チャ ンネルの位相のずれの自動計測を行い PC での可視化まで確認した。

4. プロトタイプボードの開発

ソフトウェア機能確認ボードでは使用したマルチプレクサ IC の仕様のために 100MHz のクロック信号で は使えない。そこで、高周波信号に対応するべく FPGA 内にマルチプレクサを作成し信号の選択部を作成す ることとした。事前テストでは FPGA(Xilinx 社製 Spartan3AN)に 8to2 マルチプレクサを作成し、100MHz のクロック信号を信号選択及び TDC による計測の確認まで行うことが出来た。テスト結果をふまえ、FPGA を使用したプロトタイプボードを開発した。(Fig.4)

プロトタイプボードは合計 5 つの FPGA を使用した。4 つを 32to1×2 マルチプレクサ、1 つを 4to1×2 マルチプレクサとして使用する。×2 とはスタート信号用ストップ信号用とそれぞれ別の経路を設けたため である。128 本ある LVDS 信号は、32 本ずつ 4 つのグループに分けられ 32to1×2 マルチプレクサへそれぞ れ入力される。そこで選択された4本×2の信号は4to1×2マルチプレクサへと入力し、信号選択及びLVDS から LVTTL レベルへの変換を行い TDC へ入力する。

プロトタイプボードでは FPGA の内部回路などにより、各入力端子から TDC のスタート及びストップ入 力までの経路差が生じるためその差を埋める調整が必要である。そこで同じフェイズのクロックを 1ch 対 [2:64]ch に入力をして調整を行ったところ、全ての組み合わせが 500ps 以内に収まったことを確認した。

5まとめ

ソフトウェア機能確認ボード及びプロトタイプボードの開発結果により、時間同期モニターシステムに 要求されている 100MHz を 1ns 以下の時間分解能で確認する目的は達成された。 プロトタイプボードはその 入力端子の多さにより、テスト信号の作成などの関係で全信号データの自動取得を行うまでには至らなかっ たが、マイクロコントローラを用いた計測方法及びソフトウェア機能確認ボードで開発したソフトは同じで あるため、短時間の調整で自動取得が行えると予測できる。これにより、SAMURAI-TPCの読み出し回路で ある GET システムに発生する AsAd ボードの時間同期が確保されこととなる。

Fig.4 Prototype board

got through the FPGA

[参考文献]

[1] Y.Shimizu et al, J. Phys. Conference Series 312 (2011)

[2] S.Anvar *et al.* [GET: A Generic Electronic System for TPCs for nuclear physics experiments] Physics Procedia にて出版予定

[3] T. Isobe, RIKEN Accel. Prog.Rep. 45 (2012) 132.

²³⁸Uの飛行核分裂による中性子過剰核の生成断面積の測定 Cross section measurement of neutron-rich nuclei production using in-flight fission of ²³⁸U beam

村井大地 指導教員 家城和夫

1 概要

不安定核を加速器によって生成する技術が発明されて以来、不安定核の物理はビームの生成技術とともに発展して きた。中性子の個数が陽子の個数と極端に異なる不安定核では、¹¹Liのように中性子が安定核よりも広く分布する 「中性子ハロー」や中性子数 N = 8,16 における「魔法数の消失・出現」などが確認されている。これらの現象は標準 的な原子核モデルでは説明することが出来ず、さらにはこれらの発見は主に軽い原子核で観測されてきたものなので、 現象の全貌を理解するためにはさらに広い範囲の原子核を対象に研究を行う必要がある。

また、鉄よりも重い原子核は安定線よりもかなり離れた中性子過剰核を経由し、それらがベータ崩壊して生成され たと考えられている。中性子が過剰な不安定核を研究を進めることは、原子核自身のよる深い理解を得るだけではな く、元素合成の解明にも重要になってくる。中性子過剰核を生成し、その生成断面積を測定することは、これらの研 究を行う上で非常に重要な第一歩である。

本研究では、新同位元素探索実験で生成された中性子過剰核について、解析により粒子識別精度を向上させること により中性子過剰核の生成断面積の導出を行った。

2 BigRIPS

2011 年 10 月に Z=60 付近の中核領域においてウランビームの飛行核分裂反応を用いた新同位元素探索実験を行っ た。実験は理化学研究所仁科加速器研究センターにある飛行分離型超電導 RI ビーム生成分離装置「BigRIPS」を使 用して行われた。BigRIPS は加速器によって加速された一次ビームを標的に照射することで不安定核を生成し、分離 を行う装置である。BigRIPS は不安定核の生成分離を行う「第一ステージ」と分離された不安定核の粒子識別を行う 「第二ステージ」で構成される。第一ステージでは、任意の粒子に合わせた磁場設定を行い、スリットやデグレーダー を用いることで欲しい粒子が選択される。第二ステージでは、磁気剛性 ($B\rho$) と飛行時間 (TOF)、さらに今回は延 長したビームラインでエネルギー損失 (ΔE) を測定し質量電荷比 (A/Q) と原子番号 (Z) を導出することで粒子識 別を行った。

実験は2設定で行われ、それぞれ¹⁶¹Sm⁶²⁺、¹⁶⁸Gd⁶⁴⁺が中心粒子として設定された。粒子識別には、PPAC、プラスチックシンチレータとSi stack 検出器を用いて行われた。PPAC は位置有感型のガス検出器で各焦点面のビームの位置を測定することでビーム軌道の再構成を行う。Si stack 検出器は Si 検出器を 14 枚重ねた構成になっており、入射した粒子を止めることで全運動エネルギーの測定も可能となっている。Si stack 検出器の側面に 4 台の Ge 検出器を設置し、Si stack 検出器で止まったアイソマーから生じる遅延 γ 線を測定することでアイソマーの観測も行なっている。既知のアイソマーからの遅延 γ 線を測定することで粒子識別が正しく行われたかを確認することができる。

Fig.1 Beamline detectors

3 解析

実験で得られたデータを用いて中性子過剰核の生成断面積を導出を行った。生成断面積を正しく導出するために は、精度の高い粒子識別を行う必要がある。粒子識別はZおよびA/Qを用いて行うが、特にA/Qの分布は電子が 一個ついている水素様イオンのピークが測定すべきピーク(full strip)の近くに生じる。そのため、分解能を向上さ せなければ分離が難しくなる。解析ではビームの軌道、飛行時間を精密に分析し、磁気剛性と粒子速度を精度良く決 定することでA/Qの分解能を上げた。また、中には数イベントしか観測されない粒子もあり、バックグラウンドが 多いとそのイベントが本物かどうか判断することが難しくなる。バックグラウンドは検出器やエネルギー減衰板など の物質で反応を起こしたものや pile up などから生じるが、検出器の信号や得られた位置・角度・磁気剛性等の情報、 またそれらの相関から本物から外れているイベントを除去した。

Fig.2 A/Q spectrum of Sm

Fig.2 に例としてサマリウム (Sm, Z=62)の A/Q 分布図を示す。A/Q の分解能は解析を行った結果、0.045% 程度 となり、図で水素様イオンと full strip が分離できている事がわかる。これらの解析結果を用いて収量の導出を行っ た。実験で得られたデータを LISE++ による abrasion fission と fragmentation による生成のモデルと比較を行っ たところ、モデルの値よりも実験データが一桁以上大きくなっていることが確認された (Fig.3)。

Fig.3 Compare measurement yield with calculation data(Sm, Z=62)

地磁気共役点オーロラの発光強度比較

Comparison between emission intensities of geomagnetic conjugate auroras

重信薫

指導教員 田口真

1. はじめに

オーロラ電子は、地球の磁力線に沿って運動するという基本的な物理特性を有しているので、オーロラは 南半球と北半球の両極域に出現する。一本の磁力線で結ばれた南北両半球の地点を地磁気共役点と呼ぶ。地 磁気共役点では、同じような形状のオーロラが見えることが予想され、オーロラの発生領域やメカニズム、 地球磁気圏の南北非対称性を研究する上でとても重要な観測手段である。しかし地理的な要因により、オー ロラ帯に位置し、地磁気共役点オーロラの地上光学観測が可能な場所は非常に少なく、現在のところ、南極 の昭和基地と北極のアイスランドのペアだけである。共役点観測が可能な季節は、南北両半球が同時に暗夜 になる春分・秋分の時期に限られる上に、両共役点上空が同時に快晴でオーロラが出現する必要がある。こ のように観測条件に多くの制約があるため、共役点オーロラの研究はあまり行われておらず、これまでは主 にオーロラの形状変化や共役点位置の時間変化について研究されてきた。本研究で焦点を当てている地磁気 共役点オーロラの発光強度比については Stenbaek-Nielsen et al. [1973]により両極の磁場強度の違いによ る降下粒子の差を元に理論的に考察されている。しかし、全天イメージャーによる地磁気共役点オーロラの 発光強度の比較は Asozu et al. [2006]らによって観測的に検証された1 例のみであり、南北で形状の一致 した地磁気共役点オーロラの発光強度を比較した例はない。地磁気共役点オーロラの発光強度比を調査する ことにより、磁場強度の差から考えられる発光強度比を観測的に検証することが可能である。これにより、 発光強度について定量的な議論をすることができ、残されたオーロラの謎を解明する上で重要な情報が得ら れる可能性がある。

2. 観測

我々は、地磁気共役点におけるオーロラの発光強度比を観測的に検証することを目的に、2010年9月から アイスランド・フッサフェルと南極・昭和基地で、同型の全天単色イメージャーを用いて N₂⁺ 427.8 nm 発光 の長期間南北同時観測を行った。その結果、2011年9月9日から11日深夜にかけて活動的なオーロラの観 測に成功した。このイベントでは地磁気変動の活動度を表す K 指数が最大で6に達するサブストームが発生 した。本研究ではこれらのイベントから同時刻に南北両観測地点に鏡像のオーロラが出現した時間帯を選び 出し解析した。

3. 解析·結果

2011 年 9 月 9 日において、両観測点で同時刻に鏡像のオーロラが出現した時間帯は 22:37UT-22:45UT と 23:40-23:45UT であり、11 日は 22:40UT-22:45UT であった。発光強度の比較を行う際、オーロラが映り込ん でいる全ての領域で比較を行うのではなく、地磁気共役点にあたる範囲(フッサフェルでは全天空の東側、昭 和基地では西側)でスパイラルなど特徴的な構造を形成している領域で切り取り、その領域内での発光強度の 上位 10 画素の平均値(本論文ではこれを最大値とする)と平均値の 2 種類で比較を行った。南北の磁場強度の 違いから予測される発光強度比は北半球における値を基準として約 1.44 であり、昭和基地側が約 44%明るく なると推察された。実際に観測したオーロラの発光強度比は 9 月 9 日の 2 つのイベントでそれぞれ、1.21±

0.13(最大値)、1.29±0.23(平均値)と1.53±0.25(最大値)であり、11日のイベントでは1.23±0.13(平均値) と1.33±0.16(平均値)であった。発光強度比の値としては予想されていた値より低い値を示したイベントも あったが、観測的な方法と南北の磁場強度の違いによる降下粒子比によって推定された方法による両者の値 は誤差の範囲内で一致しており、発光強度比は南北の磁場強度の違いで説明できることが分かった。

Fig.1. The emission intensities (left) and ratios (right) from 23:41:00 to 23:45:00, Sep. 9.

September 9	Observed		Expected
Time	Maximum	Average	
22:37:30-22:40:30 UT	1.21 ± 0.13		1.43
23:41:00-23:45:00 UT	1.53 ± 0.25	1.29 ± 0.23	1.43
September 11	Observed		Expected
Time	Maximum	Average	
22:40:30-22:45:30 UT	1.23 ± 0.13	1.33 ± 0.16	1.43

Table.1. Summary of observed and expected emission intensity ratios.

4. 考察

地磁気共役点位置は地磁気地方時と惑星間空間磁場の Z 成分と Y 成分のなす角に強い相関があることが示 されており[Østgaard et al. 2005]、本論文で解析を行った領域では相関係数はそれぞれ 0.74 と 0.70 とな った。この事は、比較を行った領域は南北で同じ磁力線上のオーロラである可能性が大きいことを示してお り、オーロラの発光強度の非対称性は、磁場の非対称性によって降下してくる粒子のフラックスの違いによ るものであると説明できる。南北で異なった形状での比較ではあったが、アイスランドより昭和基地の方で 明るいオーロラが出現する事を示した Asozu et al. [2006]による報告を、本研究の解析結果は支持する形とな った。本研究によって、南北の磁場強度の違いによる発光強度比の観測的な検証により、磁場の弱い領域で は明るいオーロラが現れるということを実証した。

参考文献

- [1] Asozu, 2006, Master Thesis, Tohoku University.
- [2] Steanback-Nielsen, 1972, J. Geophys. Res., 77, 1844-1858.
- [3] Østgaard et al., 2005, Geophys. Res. Lett., 32, L05111.
- [4] Standard Star Optical Photometry Data, http://deepred.bu.edu/obstools/starflux/indexmag.html
- [5] Data Center for Aurora in NIPR, http://polaris.nipr.ac.jp/~aurora/indexJ.html

中質量連星系の前主系列星 θ_1 Ori E のフレア観測

XMM-NEWTON OBSERVATION of a FLARE from The YOUNG INTERMEDIATE-MASS BINARY θ_1 Ori E

清水佑輔

指導教員 北本俊二

1. 序論

~400-450pcの距離に位置するオリオン大星雲(M42)には~1Myrのとても若い星が集まった星団が存在し、星 団はThe Orion Nebula Cluster (ONC)として知られている。ONCの中心にはTrapeziumと呼ばれる星の集団があ る。通常、ONCは星の大変込み入った領域であるので、現在のX線天文衛星の空間分解では個々の星の分離は 難しい。しかし、Trapeziumの星のひとつであるθ₁Ori Eが観測期間中にフレアを起こしたことで、非常に統 計の良いフレアのデータを取得する事ができた。我々は、θ₁Ori Eのフレア時のスペクトル解析をおこない、 中質量星のフレア現象について調査した。θ₁Ori Eは約3.5M_oの中質量の前主系列星2個で構成されている連 星である。2-8M_oの中質量星が前主系列星として存在する時間は約10-20Myrと短いため、このタイプの星の研 究は難しい。今回、前主系列星の中質量星であるθ₁Ori Eのフレアを定常状態、 フレアの立ち上がり、ピ ーク、減衰と状態変化の過程を統計よく解析をおこなったことは非常に意義のあるものである。

2. X線天文衛星「XMM-Newton」による観測

「XMM-Newton」は1999年12月に打ち上げられたESA(欧州宇宙機関)のX線天文衛星である。X線CCD検出器 (EPIC),X線分光器(RGS),可視光、紫外線検出器(OM)という3つの検出器システムを搭載している。「XMM-Newton」 は2001年10月3日0時56分から同12時6分までの約半日、Trapezium OB starの一つであり、スペクトル型07-05.5 の θ_1 Ori Cを観測した。 θ_1 Ori Cは強磁場を持ったTrapezium OB starの中でも最もX線で明るい星である。 我々は観測中に同時に視野に入っている前主系列星である中質量星の θ_1 Ori Eの巨大なフレアの立ち上がり を捕えている事を発見した。我々はEPIC、RGSのデータを用いてフレアを起こす前の状態(定常状態)とフレア が起きている状態に分けて解析をすることで θ_1 Ori Eのフレアによる物理変化を調べた。

3. スペクトル解析

Fig 1はEPICのデータによる θ₁ Ori Eの光度曲線である。観 測開始から約20000秒後にフレアを起こしていることが分かる。 Fig 2はフレアを起こす前後で描いたCCDのイメージ図で、やは り θ₁ Ori Eがフレアを起こしていることが分かる。フレア状 態は観測時間中に立ち上がりから減衰するまで見えているの で、フレアを起こしている時間帯を5分割して、より詳しくス ペクトル解析をおこなった。各時間帯でのスペクトルを衝突電 離平衡の光学的に薄い熱的プラズマに星間吸収を考慮したモデ

Fig 1: Light Curve of θ_1 Ori E.

ルによるフィッティングをおこなった。様々なモデルを試したところ、定常状態時は温度2成分、フレア時は

温度3成分のモデルでうまく表 すことができた。Fig 3に各時 間帯で求めた温度とEMのタイ ムスケールを示す。この際、フ レア時の低温と中温のパラメ ータは定常状態時で求まった 値に固定した。したがって、フ レア時は定常成分(低温、中温 成分)にフレア成分(高温成分) が加わったと解釈することがで

Fig 2: Images of θ_1 Ori E. The left image shows θ_1 Ori E in its quiet state. The right image shows in its flare state.

きる。また定常時は θ_1 Ori Cからのデータの混入が懸念されるが、この解析によりフレア成分は θ_1 Ori E のフレア成分と考えることができる。フィッティングによるベストフィットパラメータをTable 1に示す。RGS のデータはEPICのデータのように θ_1 Ori Cと θ_1 Ori Eを個々に分離することができなかった。そこで θ_1 Ori Eがフレアの時間帯のスペクトルから定常状態時のスペクトルを差し引くことでフレア成分のスペクトルを 作成したスペクトルはEPICのデータによるフレア成分と矛盾がない結果となった。

パラメータ	単位	Time1	Time2	Time3	Time4	Time5	Time6
N_H	cm^{-2}	$0.31 {\pm} 0.01$	0.31	0.31	0.31	0.31	0.31
Z	-	$0.36{\pm}0.04$	$0.36{\pm}0.04$	$0.49{\pm}0.05$	$0.63{\pm}0.06$	$0.65{\pm}0.04$	$0.62{\pm}0.04$
K_BT_{low}	keV	$0.81{\pm}0.02$	0.81	0.81	0.81	0.81	0.8
$K_B T_{middle}$	$\rm keV$	$2.5{\pm}0.06$	2.5	2.5	2.5	2.5	2.5
K_BThigh	$\rm keV$	-	$26.5 {\pm} 20.78$	$15.8{\pm}2.3$	$8.5{\pm}0.5$	$5.34{\pm}0.18$	$4.7{\pm}0.3$
EM_{low}	$10^{54} { m cm}^{-3}$	$5.0{\pm}1.1$	5.0	5.0	5.0	5.0	5.0
EM_{middle}	$10^{54} { m cm}^{-3}$	$16.1{\pm}0.5$	16.1	16.1	16.1	16.1	16.1
EM_{high}	$10^{54} {\rm cm}^{-3}$	-	$6.5{\pm}0.9$	$40.6{\pm}1.1$	$57.9 {\pm} 1.6$	$54.3{\pm}1.5$	$32.6{\pm}1.3$
$\chi^2/d.o.f$	-	451.7/383(1.18)	161.3/170(0.94)	410.5/378(1.08)	474.2/444(1.07)	586.1/497(1.18)	427.8/382(1.12)

4. まとめ

EPICのデータ解析より、フレ アは最大で26.5±20.8keVまで 上昇し、EMも(57.9±1.6)× 10^{54} cm⁻³まで及んでいたことが分 かった。求めたフレアのプラズ マの温度は最大級の太陽フレア と比較しても1桁程度高く、他の 星のフレアと比較しても数倍高い値 であった。また、高温成分のEM値か

Fig 3: Time evolution of the temperature (left) & emission measure (right) of the plasma.

らフレアの体積の時間変化を推測したところ、最大で太陽の体積の約7倍程度まで広がっていたことが分かった。またフレ中のプラズマのエネルギーが磁場のエネルギーと同程度と仮定すると磁場は約400Gまで上昇し、 磁場に関しても他の星のフレアと比較して3-4倍程度大くなる。このことから今回観測したθ₁0ri Eのフレア はかなり大規模なものであったことが分かった。

小西 達也 指導教員 平山 孝人

Synopsis An electron beam source using the photoelectric effect has been developed. It is found that an electron beam current of ~ 100 nA with an energy spread of ~ 0.10 eV can be realized by using a laser diode of photon energy = 2.6 eV and photon power > 60 mW.

Introduction

We have been studying electronic excitation processes in rare gas clusters by electron energy loss spectroscopy [1]. In this study acquisition time for one spectrum was about 50 hours. This is partly due to the low current of incident electron beam (a few nA), which is limited by the use of an electron energy selector.

The purpose of this study is to develop an electron beam source which can produce a low energy electron beam of a current of about 100 nA with an adequate energy spread (< 0.2 eV) using the photoelectric effect. This electron beam source enables us to shorten the acquisition time and also to measure the differential cross section of rare gas clusters.

Thermoelectronic emission and field emission are often used as a source of electron, but energy spread of electrons produced by these methods is typically larger than 1 eV, which is too large for our purpose. We have developed an electron beam source using the photoelectric effect because the electron energy spread of emitted electron by photoelectric effect can be varied arbitrarily.

Photoelectric Effect

Photoelectric current I_e is given by

$$I_{\rm e} = e\eta I_{\rm p} \qquad (1)$$

where I_p and η are a number of incident photons per second, a number of emitted electrons per incident photon (quantum yield). Then quantum yield η of LaB₆ (cathode used in this study) is typically $10^{-4} \sim 10^{-6}$ [2], and is known to be strongly dependent on the experimental conditions, such as the vacuum pressure, incident photon energy, surface condition of the cathode, etc. We expect that the emission current of 100 nA can be obtained by using light source power of order of 10 mW.

Maximum electron energy which is roughly equal to the energy spread of the electron beam ΔE , is given by

$$E_{\rm max} = E_{\rm p} - \varphi = \Delta E \qquad (2),$$

where E_{max} , E_{p} and φ are maximum electron energy, incident photon energy and work function of photocathode, respectively. The energy spread $\Delta E \approx 0.1$ eV is expected if we use E_{p} of 0.1 eV higher than the work function of the photocathode.

Experimental Setup

Schematic view of the experimental apparatus is shown in Fig 1. We used LaB₆ (100) single crystal of 1 mm in diameter as a photocathode because of its chemical stability, relatively large quantum yield, and small work function ($\varphi = 2.5 - 2.7$ eV). It is heated to 1500 K before each measurement for surface cleaning.

Figure 1. Schematic view of the experimental apparatus.

The photocathode is irradiated by visible light from a laser diode (LD). Peak photon energy E_p and output power of LDs used in the present work are listed in table 1. Emitted photoelectrons are focused by a set of electrostatic lens system and are energy-analyzed by a parallel plate energy analyzer. The geometrical energy resolution of this energy analyzer is one-hundredth of the pass energy. Background pressure in the vacuum chamber is about 6×10^{-9} Pa.

Table 1. Specifications of the LDs used in the present work.

Peak Wavelength	Peak Photon Energy	Output power
405 nm	3.06 eV	200 mW
448 nm	2.77 eV	150 mW
472 nm	2.63 eV	100 mW
532 nm	2.33 eV	1000 mW

Experimental Results

Figure 2 shows the energy distribution of the electrons emitted by the irradiation of $E_p = 2.77$ eV light, and the acceleration energy of the electron is 40 eV. Solid lines represent the results of gauss fitting. The peak position is used as the origin of the electron energy. Peak widths ($\Delta \varepsilon$) estimated by Gauss fitting as a function of

the electron acceleration energy are listed in Table 2. The peak width $\Delta \varepsilon$ is determined by the energy spread of the photoelectrons ΔE in eq. (2), and the energy resolution of the analyzer E_a , which is proportional to the electron acceleration energy E_e , as

$$\Delta \varepsilon^2 = \Delta E^2 + k E_e^2 \quad (3)$$

From the experimental results shown in table 2, ΔE and φ are estimated at 0.29 eV and 2.5 eV, respectively, from which we expect that we could obtain an electron beam with an energy spread of about 0.1 eV if a LD of $E_p = 2.6$ eV is used.

Figure 2. The results of energy distribution of the electrons emitted by the irradiation of $E_p = 2.77$ eV photon, and the acceleration energy of the electron is 40 eV. light. Solid lines represent the results of Gauss fitting.

Table 2. Peak widths ($\Delta \varepsilon$) estimated by Gauss fitting as a function of the electron acceleration energy. The energy of the incident light is 2.77 eV.

Acceleration energy	30 eV	40 eV	50 eV	60 eV
$\Delta \varepsilon$	0.316 eV	0.336 eV	0.358 eV	0.383 eV

We have estimated from η and E_p the required photon power W_{100} to obtain the emission current of 100nA, and the results are also included in Table 3.

Table 3. The results of photoelectron current, quantum yield and W_{100} .

E_{p}	$I_{\rm p}$	Ie	η	W_{100}
3.06 eV	19 mW	400 nA	6.4×10^{-5}	4.6 mW
2.77 eV	28 mW	200 nA	1.9 × 10 ⁻⁵	15 mW
2.63 eV	20 mW	30 nA	4.0×10^{-6}	60 mW
2.33 eV	100 mW	< 1 pA	$< 1 \times 10^{-10}$	-

Figure 3 shows the results of dependence of photoelectron current on time. As can been seen from figure that the photocurrent gradually decreases with time. The lifetime τ is defined as the time when the photoelectric current decreases by half. The results in fig. 3 shows the higher the photon energy $E_{\rm p}$, longer the lifetime τ . Figure 4(a) shows the dependence of τ on the cathode temperature. It is found τ becomes longer when the temperature increases to about 1000 K but becomes shorter at about 1100 K. Figure 4(b) shows the dependence of τ on the vacuum pressure of the chamber. The pressure has been controlled by introducing Ar gas and air into the chamber. It is found in both cases that τ is longest at the lowest vacuum pressure, indicating that ultra-high vacuum condition is essential for the use of this electron source.

Figure 3. The results of dependence of photoelectron current on time. Background pressure is 4×10^{-9} Pa, and cathode temperature is 300 K.

Figure 4. The dependence of lifetime on (a) cathode temperature, and (b) vacuum pressure. Vacuum pressure in (a) is 4×10^{-9} Pa, and cathode temperature in (b) is 300 K.

Conclusion

We have developed an electron beam source using the photoelectric effect, and measured I_e , ΔE and τ . From these results, it is expected that the electron beam source of $I_e \approx 100$ nA and $\Delta E \le 0.1$ eV can be realized by using a laser diode of photon energy = 2.6 eV, and photon power > 60 mW under the vacuum pressure lower than 10^{-7} Pa. It is found that the lifetime can be increased by raising the cathode temperature to about 900 K.

This study showed that our electron beam source can be continuously used for about 10 hours in an ultra-high vacuum condition. It should be noted that we can use this source even in normal vacuum condition, i.e. in the order of 10^{-7} Pa, if the cleaning of the photocathode surface, which takes just a few minutes, in done in every few hours.

Reference

H. Kubotera, et al., Appl. Surf. Sci. 256, (2009) 1046-9, H. Kubotera, et al., J. Phys. Conf. Ser. 288 (2011) 012012.
 B. Leblond, et al., Nucl. Instr. Meth. A 372, (1996) 562.

リングコアフラックスゲート磁束計のデジタル測定法の開発 Development of Digital Detection for Ring Core Fluxgate Magnetometer

植山祐輔 指導教員 柳町朋樹

1. 背景

惑星間空間や惑星の探査において磁場の測定は非常に重要であり、今まで多くの人工衛星に磁束計が搭載さ れてきた。フラックスゲート磁束計は Aschenbrenner と Goubau によって開発されたもので、DC~数十 Hz 程 度の低周波域の磁場を計測することができる。フラックスゲート磁束計はコアの形状によって円柱状の磁性 体1本をコアとするシングルロッドコア型、それを2本並行に並べたものをダブルロッドコア型、軟磁性体 を巻いてリング状にしてあるリングコア型に分類される.

2. 原理

Fig.1リングコアセンサー

Fig.2 ヒステリシス曲線

Fig.3ブロックダイアグラム

リングコア型のフラックスゲート磁束計はFig.1のようにリング状の磁性体に励磁 用のドライブコイルが巻いてあり、それを覆うようにピックアップコイルが巻いて ある。ピックアップコイルは磁束の変化によって起電力を発生する。磁性体中の磁 束密度は、それ以前の磁場の状態に影響を受ける性質があり、これを磁気ヒステリ シスと呼ぶ。Fig.2は磁性体の磁気ヒステリシス曲線を表す。Fig.3はブロックダ イアグラムを表す。

シングルロッド型と異なり,外部磁場のピックアップコイルの巻線に垂直な成分 (H,)が0の場合,リングコア型はその対称性によりコア内の磁束が変化してもピッ クアップコイルに起電力は発生しない。しかしH,が存在すれば,コア内の磁束がそ れに平行なところと反平行なところのヒステリシスにずれが生じるため,その和を 検知するピックアップコイルに起電力が生じる。このとき,ピックアップコイルに 直流電流を流し,それによって発生する磁場がH,を打消すならば,再び起電力が発 生しない状態を作ることができる。この打消し電流と発生する磁場強度は比例関係

にあるため,打消しの電流値から外部磁場強度を推定することができる。 周波数 fの交流電流をドライブコイルに流し励磁した場合、外部磁場の大きさに振 幅が比例する周波数 2fの起電力の高調波(第二次高調波)がピックアップコイルに 発生する。つまり打消し磁場によって外部磁場が打ち消されるとき第二次高調波の 振幅が0になる。解析ではこのことを利用し、1ドライブ周期幅の起電力波形をフ ーリエ変換し第二次高調波の振幅が0になる打消し電流値を検出することにより *H*, を推定する。

3. 解析

解析 1. 周波数 4.883 kHz のドライブ電圧で励磁、PC からの制御電圧によってコイルを流れる打消し電流の 大きさを変え、打消し磁場を発生させた。第二次高調波が最小になる付近での第二次高調波の変化がわかる ように、H₄を打ち消す電流値とその両端に 21 µ A 間隔でそれぞれ 3 点ずつの計 7 点の電流値における第二次 高調波の振幅を求める。その結果を 2 次関数でフィットし、関数が最小となる電流値から H₄を推定し、改め てその電流値を中心とした 7 点の測定を実行するというループを繰り返すことによって、H₄の時間変化を求 めた。Fig.4 は平均電流値の間隔が 21 μ A のときの打消し電流の(1 ドライブ周期に渡る)時間変化を表す。 Fig.5 は 32 周期分を重畳した打消し電流の平均値が-2378, -2451, -2527 μ A のときの起電力のパワースペクト ルを表す。Fig.6 は打消し電流を変えた場合の第二次高調波の変化を表す。Fig.7 は 32 周期分を重畳した打 消し電流の平均値が-2378, -2451, -2527 μ A のときの起電力波形を示す。

解析 2. 磁束計の向き南北方向、ドライブ電圧の周波数 4.883 k Hz。打消し電流を制御し、第二次高調波が 最小になるときの電流値を求め、磁場強度の時間変化がわかるように外部磁場と打消し磁場のつり合いから 磁場強度としてプロットした。Fig.8 は磁場強度の測定結果である。

4. 結論

解析 1. 起電力波形のパワースペクトルを求めたところ、第二次高調波以外ドライブ周波数の奇数次と偶数次の高調波が見られた。これはリングコア内の磁束密度のズレが原因であると考えられる。

解析 2. 磁場強度に 300 n T の変動が見られた。これは研究室内の室温の変化によって変動しており、電子回路上で温度依存性がある抵抗、オペアンプが原因であると考えられる。現在この室温の変化による変動を少なくするように電子回路を改良している。

[参考文献]

[1] Fluxgate Magnetometers for Space Research G. Musmann/Y. V. Afanassiev 2010 年

[2] 磁気物性の基礎 能勢 宏/佐藤徹哉 1997 年

Newton-IV号による画像処理型変位計を用いた近距離重力実験 Short range gravity experiment using digital image analysis system in Newton-IV

岸 礼子 指導教員 村田次郎

1. Introduction

逆二乗則の形をとるニュートンの万有引力の法則は、天体間スケールでは非常に高精度で検証されている が、ミリメートル以下では精度よく実験検証されてこなかった[1]。重力は他の三つの相互作用に比べて桁違 いに弱く、近距離間の重力を高精度で測定することが非常に困難なためである。桁違いに弱い理由として、 重力は他の力とは異なり三次元以上の高次元空間(余剰次元)にまで伝播しているためだと考えられている [2]。四つの力の統一が期待されている超弦理論などの理論では、余剰次元の大きさはプランクスケール程度 という実験検証不可能な大きさだと考えられてきた。しかし、1998年アルカニハメドらは ADD モデル(大き な余剰次元モデル)を提唱し、余剰次元の大きさは 1mm以下にまで広がっている可能性を指摘した[3]。そ の範囲では万有引力の法則からの逸脱が実験的に観測されると考えられる。

2. 目的

ニュートンの法則を疑い、本来の式に新しい力の探索に用いられる Yukawa 型ポテンシャルを加え、万有引 力定数をGとし距離が r 離れた二つの質量 m, M 間の重力ポテンシャルを以下のように書き換えて考える。

$$\mathbf{V} = -\mathbf{G}\frac{mM}{r}\left[1 + \alpha \exp\left(-\frac{r}{\lambda}\right)\right] \tag{1}$$

αはニュートン重力に対する Yukawa 項の大きさを表し、λは力の到達範囲、つまり余剰次元の大きさを表 している。距離 r の値がλよりも小さくなると Yukawa 項の寄与が急激に大きくなり、r がλより大きい場合 は現在の実験結果と矛盾しないことがわかる。近年数々の研究チームが逆二乗則を疑いαとλの大きさに制 限をかけてきた。本研究は、近距離重力の精密検証による標準理論を超える物理の発見が目的である。

3. 実験

我々はこれまでにセンチメートル~ミリメートルスケールの近距離におけ る重力の逆二乗則の精密検証に成功している[4,5]。近距離での重力を測定す るために、200年以上も前から使われており、現在でも多くの重力実験で用い られている「捩れ秤」の仕組みを使用する。研究室独自の画像処理型測定シ ステムを用いて、CCDカメラで撮影したねじれ秤の画像の輝度情報を解析する ことによりその変位を求める[6]。本研究では二種類の実験を行った。

• Experiment I

Experiment I では、ミリメートル以下での高精度測定を行うために昨年度 開発された装置 Newton-IV 号に改良を加えた[7]。装置は真空チェンバー内に 入れられ、高真空状態の中測定を行った。装置に用いた捩れ秤のターゲット とアトラクター間の最短距離は 2.8 mmになっており、従来の実験より近距 離での測定が行える設計になっている(Fig.1)。この捩れ秤は裏側に 60本 の線がひかれており、下から一台のカメラで撮影する。

Fig.1: 捩れ秤

• Experiment II

Experiment I を基盤に、分解能向上を目的 とした改良を行った。二台のカメラを用いて、 上から捩れ秤の両端を拡大し撮影する仕組み である(Fig.2)。捩れ秤は Experiment I と 同じものを用いて、ターゲットの上部に円形 の印をつけた。この印の輝度重心をカメラで 追うことでターゲットの片側の動きをそれぞ れ求める。そして、二台のカメラから得た位 置の変位を合わせ、同期させることでターゲ ット全体の動きを求めることができる。この 測定方法により、カメラー台で撮影した時と 比較して分解能の向上が狙え、また、捩れ方 向以外の横揺れなどの余計な動きを取り除く ことができる。

Fig. 2 : Experiment II Image

4. 解析方法

角度変位と時系列を元にした測定データでは、基準振動が現れてしまうため重力によるシグナルの大きさ を知ることが難しい。そこで測定データを離散フーリエ変換することで周波数スペクトルを求め、重力源の 振動周波数に同期する成分の大きさから捩れ秤に働くトルクを得る、周波数解析の手法を用いる。実験結果 を、先ほどの式(1)による理論計算と比較することで、距離λでのαの値の検証を行う。すなわち逆二乗則か らの破れの検証をすることができる。

5. 結果

Experiment I では、モーターと連動して動くアトラクターの台による光の反射が生み出す、モーターの回転に依存した輝度の変化が起こることがわかった。これは系統的なものとしてデータにのるため精度を悪くする。Experiment II ではモーターと連動して回転するものを撮影範囲内に収めていないため、モーターの回転に依存した輝度変化の影響がない。最終結果については、発表会にて報告する。

[参考文献]

[1] Ephraim Fischbach, Carrick L. Talmadge [The Search for Non-Newtonian Gravity]

[2] 橋本幸士 「Dブレーン 超弦理論の高次元物体が描く世界」東京大学出版会

[3] N. Arkani-Hamed, S. Dimopoulos, and G. Dvali. Phys. Lett, B, 429(1998)263

[4] 二宮一史, "オンライン画像処理型変位計を用いた近距離重力測定実験", 立教大学理学研究科修士論文 (2009)

[5] 小川就也, "画像処理型変位計を用いたミリメートル以下での近距離重力実験", 立教大学理学研究科修 士論文(2010)

[6] J. Murata, "Optical Alignment System for the PHENIX muon tracking chambers", NIMA500(2003)309
[7] 西尾悠法, "グローバルフィット法による画像解析を用いたミクロンスケールでのニュートンの逆二乗 則の検証", 立教大学理学研究科修士論文(2011)

移動管法によるキラル分子イオンの移動度の研究 Mobilities of chiral molecular ions by a drift tube technique

齋藤和幸

指導教員 小泉哲夫

1. はじめに

人間の右手と左手のように、互いに鏡像関係にあり重ね合わせることができない一対の異性体分子を鏡像異性 体と呼び、鏡像異性体を持つ分子をキラル分子と呼ぶ。自然界に存在するキラル分子は、様々な場面でその鏡像 異性体比が偏った状態で存在している。特に地球上の生命の生体分子においては、その殆どがキラル分子である だけでなく、何故か全て一方の鏡像異性体のみで構成されている。この生体分子のキラリティー偏在が生命の進化 の過程でどのように生じたのか明らかになっておらず、生命の起源を語る上で重要な課題となっている。

上記の課題に対して、我々はキラル分子間に働く相互作用が鏡像異性体の組み合わせによって異なることが関係しているのではないかと考えており、キラル分子間相互作用を解明することで生体分子のキラリティー偏在の 理解につながると期待している。化学反応が進行するような熱エネルギー領域における分子間相互作用を研究す るための有力な実験手法として移動管法がある。我々は、移動管法を用いたキラル分子イオンの移動度測定から、 キラル分子間相互作用を解明することを目的として研究を行っている。

2. 研究概要

移動管法とは、一様電場のかかった気体中でイオン群を流動させる実験手法であり、イオンの移動度からイオン と中性粒子間の衝突断面積や相互作用ポテンシャル等を決定することができる。移動度とはイオンの移動のしや すさを表す物理量であり、イオンの移動速度 v_d と一様電場 *E* の比例係数 *K* で定義される。

キラル分子間相互作用の情報を得るためには、キラル分子気体中のキラル分子イオンの移動度を測定する必要 がある。しかし、純キラル分子気体中での移動度測定は、イオンがキラル分子気体とクラスタリング反応を起こ してしまうため非常に難しい。そこで、非反応性の緩衝気体にキラル分子を少量混合した混合気体中で移動度測 定を行う。このような実験手法を用いて、Dwivediらはキラル分子の鏡像異性体を移動度の違いで識別できること を報告している [1]。しかしこの報告には、実験結果から得られる N₂ と 2-butanol の相対的な衝突断面積比が数 万にもなる等の様々な疑問点が存在するため、さらなる検証が必要であると考えている。そこで本研究では緩衝 気体に He、キラル分子に 2-butanol (C₄H₁₀O: 質量数 74, Fig.1)を使用し、He と 2-butanol の混合気体中にお けるキラル分子イオンの移動度測定から、キラル分子間相互作用のキラリティー依存性について研究を行った。

Fig. 2: Schematic of experimental apparatus.

本研究で使用している実験装置の概略図を Fig.2 に示す。キラル分子イオンはフラグメントなしでイオン化でき る Li⁺ 付着型イオン源を用いて生成され、四重極質量選別器で質量選別されたのち移動管内部に入射される。移 動管内部は He と 2-butanol の混合気体 (数十 Pa) で満たされており、移動管内部に入射されたイオンは気体粒子 と衝突を多数回繰り返し、電場勾配に沿って移動管出口へ移動していく。移動管内部を通過したイオンは、再び四 重極質量分析計で質量分析され二次電子増倍管で検出される。移動度の測定は飛行時間計測法 (TOF 法) で行う。 移動管内部に設置された 3 枚の電気的なゲートから二次電子増倍管までのイオンの飛行時間を測定することによ りイオンの移動速度が得られ、移動度を求めることができる。

3. 実験結果

3-1. 希釈効果

本研究は混合気体中で移動度測定を行うため、混合気体中の混合分子の濃度を正確に決定する必要がある。本 装置では移動管外部から He と 2-butanol をそれぞれ別々に流入し、移動管内部で混合気体を生成している。中間 流領域の混合気体では、2-butanol の排気速度が主成分である He との衝突により加速されるため、移動管内部で は希釈効果が発生し、混合気体中の 2-butanol の濃度は薄くなる。そこで、まずは希釈効果の補正係数の導出を 行った。この補正係数の導出は、移動管内部の混合気体中に Li⁺ を入射し、2-butanol とのクラスタリング反応に おける反応速度定数の圧力依存性を調べる手法で行った。補正係数 α の混合気体圧力依存性を Fig.3 に示す。この ように、希釈効果の補正係数の導出に成功し、2-butanol の濃度を正確に決定できるようになった。

3-2. 混合気体中の移動度

上記の希釈効果の影響を考慮し、He に 2-butanol のラセミ体を 0.2 %混ぜた混合気体中における Li⁺-(2-butanol) の移動度を測定した。Fig.4 は換算移動度 K_0 の換算電場 E/N 依存性を表したものであり、Fig.4 中の実線は純 He 気体中における Li⁺-(2-butanol) の移動度の最適曲線、プロット点は混合気体の濃度を変えずに圧力を変えて測定 した移動度の実験値である。この測定では 2-butanol にラセミ体を使用しているので、鏡像異性体による移動度の 違いは観測されない。換算移動度とは移動度を標準状態 (0 °C, 1 気圧) に換算した移動度であるため、測定結果は 気体圧力に依存しないはずである。Fig.4 を見ると、高 E/N では確かに圧力に依存していないが、低 E/N では 圧力によって移動度に違いが生じている。この現象は移動管内部で生じる Li⁺-(2-butanol) と 2-butanol のクラス タリング反応の影響であると考えている。クラスタリング反応の生成量は、イオンが移動管内部に滞在する時間 によって指数関数的に増加する。そのため飛行時間が長いイオンでより多くのクラスタリング反応が生じ、結果 的に飛行時間の短いイオンが多く検出される。この影響を受け、移動度は見かけ上大きい値を取ると考えられる。つまり、移動度を正しく測定するためにはクラスタリング反応を抑える必要がある。クラスタリング反応を抑える方法として気体圧力を下げる方法と気体温度を上げる方法の 2 つが考えられるが、後者は大幅な実験装置の改良が必要なため、本研究では気体圧力を下げて、移動度のキラリティー依存性について研究を行った。

Fig. 3: Correction factors α for dilution effect as a function of pressures.

Fig. 4: Mobilities of Li⁺-(2-butanol) in mixed gas as a function of reduced electric fields. $(1 \text{ Td} = 10^{-17} \text{ Vcm}^2)$

3-3. キラリティー依存性

イオンと混合分子の双方に光学分割された 2-butanol を使用し、移動度のキラリティー依存性の測定を行った。 その結果、混合気体中の 2-butanol の濃度が 0.2 %の場合の測定では鏡像異性体による移動度の違いは観測されな かった。Dwivedi らの報告では、わずか 10 ppm のキラル分子を混ぜるだけで、移動度に数%程度の変化が観測さ れている。我々の測定は彼らの測定とまったく同じ条件ではないため決定的なことはいえないが、彼らのような 大きい依存性はないと思われる。移動度のキラリティー依存性は観測されなかったが、本研究を通して希釈効果 やクラスタリング効果に関する知見を得ることができた。

参考文献

[1] P. Dwivedi, C. Wu, L. M. Matz, B. H. Clowers, W. F. Seims, and H. H. Hill, Anal. Chem. 78, 8200 (2006).

Constraints on the Charged Scalar Effect on $B \to D^{(*)} \tau \bar{\nu}_{\tau}$ $B \to D^{(*)} \tau \bar{\nu}_{\tau}$ 崩壊モードにおける荷電スカラー効果の制限

> 坂木泰仁 Advisor : 田中秀和

1 Abstract

The decay modes $\bar{B} \to D^{(*)}\tau\bar{\nu}_{\tau}$ are sensitive to charged scalar effects, such as the charged Higgs effects. In this thesis we suggest a method to determine their effects by using the ratio of branching fractions and forward-backward asymmetries. In particular, forward-backward asymmetries on $\bar{B} \to D^{(*)}\tau(\to \pi\nu_{\tau})\bar{\nu}_{\tau}$, $\bar{B} \to D^{(*)}\tau(\to \rho\nu_{\tau})\bar{\nu}_{\tau}$ and $\bar{B} \to D^{(*)}\tau(\to a_{1}\nu_{\tau})\bar{\nu}_{\tau}$ play an important role, which discriminate the Standard Model from other New Physics scenarios.

2 Introduction and Setup

Despite the standard model (SM) has been very successful in describing most of Elementary Particles phenomenology, the Higgs sector of the theory remains unknown so far, and there is not any fundamental reason to assume that the Higgs sector must be minimal, i.e., only one Higgs doublet. The simplest extension compatible with the gauge invariance is called Two Higgs Doublet Model (2HDM), which consists of adding a second Higgs doublet with the same quantum numbers as the first one. Similarly, the Minimal Supersymmetric Standard Model (MSSM) consists of adding a second Higgs doublet. In the MSSM, two Higgs doublets are introduced in order to cancel the anomaly and to give the fermions masses. The introduction of a second Higgs doublet inevitably means that a charged Higgs boson is in the physical spectra. So, it is very important to study effects of charged scalar particles.

The branching fractions of $\bar{B} \to D\ell \bar{\nu}_{\ell}$ and $\bar{B} \to D^*\ell \bar{\nu}_{\ell}$ have been measured in B Factories, where ℓ denotes e, μ or τ . We define $R(D^{(*)})$ as the ratios of the branching fractions, that is,

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\bar{\nu}_{\tau})}{\mathcal{B}(B \to D^{(*)}(e \text{ or } \mu)\bar{\nu})}.$$
(1)

Rationing two branching fractions lower the hadronic uncertainty. The theoretical predictions in the Standard Model using the heavy-quark effective theory(HQET) on $\bar{B} \to D^{(*)} \tau \bar{\nu}_{\tau}$ are evaluated as [1]:

$$R(D)_{\rm HQET} = 0.310 \pm 0.011, \tag{2}$$

$$R(D^*)_{\rm HQET} = 0.253 \pm 0.003.$$
 (3)

These are consistent with the results in Refs. [2, 3]. The R(D) is also evaluated by using hadronic form factors computed in unquenched lattice QCD as $R(D)_{\text{lat}} = 0.316(12)(7)$, where the errors are statistical and total systematic, respectively [4]. In Ref. [5], the R(D) is evaluated by using results of HQET and lattice QCD as $R(D)_{\text{HQET+lat}} = 0.31(2)$. These theoretical predictions are consistent with each other within their errors. The recent experimental results of $R(D^{(*)})$ by BABAR [6] are

$$R(D)_{\rm exp} = 0.440 \pm 0.058 \pm 0.042,\tag{4}$$

$$R(D^*)_{\rm exp} = 0.332 \pm 0.024 \pm 0.018,\tag{5}$$

which exceed the Standard Model expectations by 1.9σ and 2.6σ , respectively.

In this thesis, we consider an effective Weak Hamiltonian such as

$$\mathcal{H}_{\text{eff}}^{(b \to c\ell\bar{\nu}_{\ell})} = 4 \frac{G_F V_{cb}}{\sqrt{2}} [\mathcal{O}_{V_L} + m_{\ell} C_{S_R} \mathcal{O}_{S_R} + m_{\ell} C_{S_L} \mathcal{O}_{S_L}] + \text{h.c.}, \tag{6}$$

$$\mathcal{O}_{V_L} = (\bar{c}\gamma^{\mu}P_L b)(\bar{\ell}\gamma_{\mu}P_L\nu_{\ell}),\tag{7}$$

$$\mathcal{O}_{S_R} = (\bar{c}P_R b)(\bar{\ell}P_L \nu_\ell),\tag{8}$$

$$\mathcal{O}_{S_L} = (\bar{c}P_L b)(\bar{\ell}P_L \nu_\ell),\tag{9}$$

where $P_{R,L}$ are projection operators on states of positive and negative chirality. We assume that the neutrino helicity is only negative. This type one or more general one has been studied in Refs. [3, 4, 5] by using some observables, e.g, $R(D^{(*)})$ and q^2 distributions of R ratios and anglar asymmetry on $\bar{B} \to D^{(*)}\tau\bar{\nu}_{\tau}$, where $q^2 = (p_B - p_{D^{(*)}})^2$.

Since tauon decays light meson(lepton) with nutrino(s), the measurements of anglar distribution for tauon on $\bar{B} \to D^{(*)}\tau\bar{\nu}_{\tau}$ are difficult. However, angular dependence on $\bar{B} \to D^{(*)}\tau\bar{\nu}_{\tau}$ is important to search for the NP effect. So, we study relations between the coefficients $C_{S_{R,L}}$ and forward-backward asymmetries on $\bar{B} \to D^{(*)}\tau(\to \pi\nu_{\tau})\bar{\nu}_{\tau}$, $\bar{B} \to D^{(*)}\tau(\to \rho\nu_{\tau})\bar{\nu}_{\tau}$ and $\bar{B} \to D^{(*)}\tau(\to a_{1}\nu_{\tau})\bar{\nu}_{\tau}$, and show that it is possible to determine them almost completely by using the ratios of the branching fractions and forward-backward asymmetries on these modes.

References

- [1] Y. Sakaki and H. Tanaka, arXiv:1205.4908 [hep-ph].
- [2] M. Tanaka and R. Watanabe, Phys. Rev. D 82, 034027 (2010) [arXiv:1005.4306 [hep-ph]].
- [3] S. Fajfer, J. F. Kamenik and I. Nisandzic, arXiv:1203.2654 [hep-ph].
- [4] J. A. Bailey, A. Bazavov, C. Bernard, C. M. Bouchard, C. DeTar, D. Du, A. X. El-Khadra and J. Foley *et al.*, Phys. Rev. Lett. **109**, 071802 (2012) [arXiv:1206.4992 [hep-ph]].
- [5] D. Becirevic, N. Kosnik and A. Tayduganov, Phys. Lett. B 716, 208 (2012) [arXiv:1206.4977 [hep-ph]].
- [6] J. P. Lees *et al.* [BaBar Collaboration], Phys. Rev. Lett. **109**, 101802 (2012) [arXiv:1205.5442 [hep-ex]].

低速多価イオン衝撃による希ガス固体からのポテンシャルスパッタリング Potential sputtering from rare gas solid by highly-charged ion impact

秋和正樹

指導教員 平山孝人

1. はじめに

固体に粒子を照射すると固体表面及び固体中から固体を構成する原子やイオンなどの様々な粒子が放出される。この現象は脱離と呼ばれ、脱離の中でも入射粒子と標的原子との運動量移行による脱離過程を Kinetic Sputtering と呼び、入射粒子の持つポテンシャルエネルギーによる脱離過程を Potential Sputtering と呼ぶ。 Kinetic Sputtering に比べ、Potential Sputtering 過程については未解明な部分が多く、我々のグループでは 低速多価イオンを希ガス固体に照射することで、多価イオンの持つポテンシャルエネルギーが固体表面およ び固体中でどのように消費されるかを測定し、Potential Sputtering 過程を明らかにすることを目的とした 研究を行っている。

我々は以前、Ar 多価イオン入射による Ne 固体からの相対脱離イオン収率が入射イオンのポテンシャルエ ネルギーに比例することを報告した[1]。今回私は多価イオン衝撃による脱離収率の測定法を新たに開発し、 Ar 固体と Ne 固体における絶対脱離イオン収率を測定した。その結果から Potential Sputtering 過程の定量 的な議論を行った。

2. 実験装置

衝突実験槽の概略図を Fig.1 に示す。実験に使用する 多価イオンは ECR(Electron Cyclotron Resonance)型 イオン源で生成され、磁場による質量選別器を用いて必 要な価数の多価イオンを選別して衝突実験槽に入射さ せる。衝突実験槽の中心に設置した約 5K に冷却された 銅基板上に希ガス固体を生成し、標的としている。

衝突実験槽には、入射イオン電流を測定するための可 動式ファラデーカップ (F.C)、脱離粒子検出用 Micro Channel Plate (MCP) と 四 重 極 型 質 量 分 析 器 (Quadrupole Mass Spectrometer : QMS)が設定され ている。

低温試料表面への不純物吸着を防ぐため、衝突実験槽 内は 2×10⁻⁸Pa の超高真空に保たれている。

Fig.1 Schematic of the main chamber.

3. 測定方法

以前我々のグループでは QMS を用いて希ガス固体から脱離したイオンの測定を行い、相対脱離イオン収 率を求めた[1]。また、MCP を用いて脱離イオンを観測することにより、絶対脱離イオン収率の測定[2]を行 ったが、MCP を用いた測定では脱離した全粒子の捕集が難しく、また捕集効率も測定できなかったために、 精度の高い測定ができなかった。そこで、今回行った測定では脱離したイオンの測定は行わずに入射イオン 電流と銅基板に流れる電流を測定することで絶対脱離イオン収率を求めた。これは希ガス固体にイオンを入 射させた際に希ガス固体に流れる電流値が入射イオンの電流値よりも希ガス固体から脱離した正イオン分減 少するという現象を利用したものである。

まず初めに、Fig.2 (a)のように入射イオン電流 *I*_{FC} をファラデーカップで測定する。次に、Fig.2 (b)のよう に銅基板に流れる入射イオン電流 *I*_{Cu}を測定し、ファラデーカップで測定した電流値と同じ値である事を確か める。これは一度銅基板に希ガス固体を生成すると前述のように銅基板に流れる電流は入射イオン電流より も減少し、入射イオン電流を測定することができなくなるためである。*I*_{FC} = *I*_{Cu}ということを確認すること で、ファラデーカップで測定した電流値を銅基板に流れる電流として利用することができる。この確認作業 をした後、銅基板に希ガス固体を生成する。希ガス固体表面に入射イオンが照射された際、銅基板に流れる 電流 *I*sample は Fig.2 (c)のように正イオンが脱離した分だけ *I*Fc から減少する。入射イオン電流 *I*Fc と入射イオ ンの個数 *N*Fc の関係は、価数 *q*、素電荷 *e* を用いて(1)式で与えられ、入射イオン電流 *I*Fc から(1)式を用い て入射イオンの個数 *N*Fc を算出する。同じように脱離イオンの個数 *N*des も脱離イオンの価数、素電荷 *e*、減 少分の電流 *I*des から(1)式と同じ形で表され、脱離したイオンのほとんどは一価であることから[1]、脱離し た粒子の個数 *N*des を算出し、絶対脱離イオン収率 *Y*ion を(2)式を用いて求めた。

$$I_{FC} = eqN_{FC} \tag{1}$$

$$Y_{ion} = \frac{N_{des}}{N_{FC}} = \frac{I_{des}}{I_{FC}/q} = \frac{I_{FC} - I_{sample}}{I_{FC}/q}$$
(2)

Fig.2 Procedure of measuring the absolute sputtering ion yields. See text for details.

4. 結果

Ar 多価イオン入射による Ne 固体からの絶対脱離イオン収率を上記の方法で測定した。絶対脱離イオン収率の入射エネルギー依存性を Fig.3 に示す。1入射イオンあたり1イオン程度という非常に大きな脱離収率が得られた。また、Potential Sputtering 脱離収率を見積もるために、1~3 価の結果で入射エネルギーがゼロの極限での値を求めた。その結果を入射イオンのポテンシャルエネルギーの関数として Fig.4 に示す。Fig.4 から、Potential Sputtering のしきい値が 40eV 程度であることがわかった。

Fig.3. Absolute sputtering ion yields of solid Ne by $\operatorname{Ar}^{q+}(q=1\sim 6)$ impact as a function of kinetic energy of incident ions. Thickness of the sample film is about 1000 atomic layers.

Fig.4 Absolute potential sputtering ion yields of solid Ne by Ar^{q+} ($q = 1 \sim 3$) impact as a function of potential energy of incident ions. Thickness of the sample film is about 1000 atomic layers.

Reference

- [1] K. Fukai et al., J. Phys. Cond. Matt. 22, (2010) 084007.
- [2] 苗村郁人,修士論文,立教大学(2011)

インビーム γ 線核分光のための位置有感型シンチレーション検出器の開発 Development of a position sensitive scintillation detector for in-beam γ -ray spectroscopy

志賀慶明 指導教員 家城和夫 本林透

1. 序論

理研 RIBF(Radioactive Isotope Beam Factory)の稼働により様々な不安定核を大強度のビームで生成することが可能となった。多様な不安定核の研究を行うことにより、不安定核領域も含めた核構造を明らかにすることができると期待されている。原子核の構造研究の方法の1つとしてインビーム γ 線核分光法が知られている。RIBF で生成される不安定核は、相対論的速度 (β =0.3~0.6)を持つために、放出される γ 線はドップラー効果による影響を受ける。ドップラー効果を補正するためには、放出核の速度と γ 線の放出角度を測定する必要がある。したがって、 γ 線のエネルギー分解能は、検出器固有のエネルギー分解能に加えて速度分解能と角度分解能により低下する。今後、現在理研で行われている領域より β 安定線から離れた重い不安定核でインビーム γ 線核分光を行なうには、さらに生成率が下がり準位間隔が狭くなるために、高検出効率と高いエネルギー分解能が要求される。

以上の理由により、理研では従来の検出器のエネルギー分解能より優れた検出器のプロジェクトが進んでいる。この 検出器にはエネルギー分解能に優れている LaBr₃(Ce) シンチレータ (662keV で 3.0% 程度) の使用が予定されている。 しかし、LaBr₃(Ce) の優れたエネルギー分解能を保つためには、ドップラー効果によるエネルギー分解能の劣化を避け るために最大で角度分解能が 3°以下が要求される。

本研究では角度分解能が検出器の大きさで制限されることなく γ 線がシンチレータ内で反応した位置を検出すること による角度分解能の向上を目指す。シンチレーション検出器に位置検出を付加させた新たな検出器の開発を行った。

2. 位置有感型シンチレーション検出器の概要

位置有感型シンチレーション検出器の開発には、様々な位置検出方法を検証した。その結果、小型の光検出器を直接 シンチレータに取り付けることで、γ線の入射位置に依存した出力が確認された。小型の光検出器には光半導体素子で ある MPPC を用いた。MPPC は、小型でありながら高い増倍率を持ち、フォトン数をカウントすることが可能であ る。開発している検出器は、通常の検出器と同様に光電子増倍管を使用する他に MPPC を用いることで、γ線のエネ ルギー測定と反応位置の測定を同時に行うことができる。シンチレータ側面に取り付けた複数の MPPC の出力を比較 しγ線の反応位置への変換を行う。Fig.1 に開発している検出器の概要図を示す。

Fig.1 位置有感型シンチレーション検出器概要図

3. 位置有感型シンチレーション検出器の開発・テスト実験

検出器の開発にあたって、読み出し回路を制作し MPPC の諸性能の測定を行い、安定した動作で使用可能な事を検 証した。位置検出の確認を行うために、潮解性があるために扱いが困難な LaBr₃(Ce) ではなく、潮解性がない GAGG(Ce) シンチレータを使用した検出器を試作した。Fig.2 に ¹³⁷Cs 線源からの γ 線を試作した検出器で取得した データを示す。

従来の検出器と同様に ¹³⁷Cs 線源からの 662keV の γ 線の photo-peak が観測された。Fig.2 の中央図には、光電子 増倍管によるエネルギーと MPPC が検出したフォトン数の出力の相関を示している。 γ 線が検出器に与えたエネル ギーと MPPC の出力には正の相関が見られる。しかし、それとは別に同じエネルギーにも関わらず MPPC の出力に は分布があり、 γ 線の反応位置と MPPC の位置の関係により差が生じたと考えられる。また、異なる位置に取り付け た MPPC の出力の間には γ 線の反応位置に依存すると考えられる負の相関が見られた。特定の MPPC の付近でシン チレーションが生じた場合にはその MPPC が検出するフォトン数が多くなり、他の MPPC は、あまりフォトンを検 出しないために Fig.2 の右図のようになったと思われる。MPPC からの出力を解析することにより、 γ 線がシンチレー タと反応した位置への変換を行う。

Fig.2 左図:光電子増倍管によるエネルギースペクトル 中央図:光電子増倍管で得られたエネルギーと MPPC が検出したフォトン数の相関 右図:¹³⁷Cs 線源からの photo-peak イベントでの異なる位置の MPPC が検出したフォトン数の相関

試作した検出器のテストを γ 線源をコリメータで絞り、 γ 線の入射方向を制限して行った。光電子増倍管から得られ るエネルギースペクトルと複数の MPPC が検出したフォトン数を用いて γ 線が反応した位置への変換を行い位置分解 能を求めた。さらに、コリメータの幅による γ 線の入射方向の広がりを Geant4 により見積り、最終的な位置分解能と した。

4. まとめ

試作した検出器はエネルギー分解能を保ったまま、検出器内での γ 線との反応位置分解能 10mm 程度を達成することができた。この位置分解能は、従来の検出器よりも、角度分解能を向上することができ LaBr₃(Ce)を使用した場合でも角度分解能 3°以下を達成することができると期待される。

陽子線治療における体内中での標的原子核破砕反応の研究 Study of fragmentation reaction in the human body for proton therapy

松下慶一郎 指導教員 家城和夫 西尾禎治

1. 背景・目的

陽子線治療において、腫瘍に陽子線を照射すると、 入射陽子核と患者体内にある標的原子核が原子核破 砕反応を引き起し、その反応により生成される原子 核の中に、ポジトロンを放出する原子核(ポジトロン 放出核)が含まれる。この生成されたポジトロン 放出核による消滅ガンマ線をPET(陽電子放出断層 撮影:Positron Emission Tomography)の原理で測 定することで照射領域を観測する。観測した照射領 域画像から患者への照射線量を求めるには照射領域 のシミュレーションを行い実測結果と比較する必要 がある。

シミュレーションを行うにあたって人体を構成す る原子核と陽子線との反応断面積情報が必須となる。 しかし現在反応断面積の値は整備されておらず新た な反応断面積の値を取得する必要がある。

そこで本研究では放射線医学総合研究所陽子サイ クロトロンを用い新たに反応断面積情報を取得した。

2. 方法

本研究の測定は放射線医学総合研究所陽子サイクロトロンにて行った。

現在までに報告されている反応断面積の値は、1 つ1つの反応チャンネルに対して1つ1つの反応断 面積の値を実験によって決定したものである。必要 な全ての反応チャンネルの反応断面積情報を網羅す るため、現在まで報告されていないもしくは情報量 が少ない反応チャンネル毎に反応断面積の値を新た に決定していくのは非常に困難である。そこで本研 究では体内原子核を構成する原子核を含む化合物を ターゲットとし陽子を照射したときに観測される消 滅ガンマ線のActivity分布データを用い1つ1つの反 応チャンネルに対して反応断面積情報を求めるので はなく実効断面積として求める。

陽子線を照射するターゲットとして¹²C、¹⁶0、⁴⁰Ca を含む化合物(ポリエチレン、水、酸化カルシウム) を用意した。それぞれのターゲットへ 70 MeV陽子を 照射し消滅ガンマ線のActivity分布をBeam ON-LINE PET System(Fig. 1)を用いて測定し、同時に各ターゲ ットに線量確認フィルムEBT-3を張りつけ照射線量 を求め線量に対するActivityの絶対値測定を行った。

3. 結果

各ターゲットに対する陽子線の深部方向Activity 分布を取得した。Fig.2に取得した深部方向Activity 分布の一例を示す(Activityの最大値で規格化してあ る。)

4. 結論

本実験にて反応断面積情報として消滅ガンマ線の Activity分布データを取得し同時に照射線量に対す る絶対値の測定を行った。

本講演では詳細な解析結果について述べる予定である。

参考文献

- 西尾 禎治、"標的原子核破砕反応による線量照 射誘導陽子線治療の研究"、2011、東京大学大学 院医学研究科博士論文
- 2) 宮武 彩、Beam ON-LINE PET による照射領域画像 情報を用いた高精度陽子線治療に関する研究、 2009、東京大学大学院医学研究科博士論文

Fig 1:Beam ON-LINE PET System

Fig 2: Activity distribution of deep direction

TRIUMF における時間反転対称性の破れの探索・MTV 実験 Run-IIの物理解析、及び CDC セットアップの最終性能評価(Run-IV) Physics Analysis of T-Violation experiment Run-II at TRIUMF and performance test of CDC setup(Run-IV)

戸塚祐実 指導教員 村田次郎

I. 研究背景

ビッグバン直後の宇宙では等量の物質・反物質が生成されたはずだが、現在それらの存在比には大きな偏 りがある。その偏りは標準理論だけでは説明することができず、本研究ではそれを超える新しい物理の実験 的な発見を目指し、実験での観測が期待されている大きな時間反転対称性の破れの探索実験(MTV 実験)をカ ナダの TRIUMF 研究所にて行っている。MTV 実験では弱い相互作用における偏極原子核のベータ崩壊に着目し、 崩壊率の式の項の1つであるR相関が0であるか否かを検証している。R相関はその値が0でない場合、時 間反転対称性を破ることを意味するからである。R相関とはベータ崩壊を起こす親核のスピン、放出される 電子の運動量、電子スピンのベクトル三重相関であり、もし放出電子が横偏極成分を持つ場合、R相関がノ ンゼロとなる[1]。それと同時に標準理論では電子は殆ど横偏極成分を持たないため、標準理論を超える新た な物理の発見ともなる。

ベータ線の横偏極成分の測定は Mott 散乱が持つ偏極分解能を用いて行う。Mott 散乱は電子の横偏極成分 にのみ非対称性を持つ散乱であり、後方散乱に左右非対称性が生じる[2]。そこで、MTV 実験では偏極⁸Li原 子核のベータ崩壊に着目し、ドリフトチェンバーを用いて電子の後方散乱イベント(V-Track イベント)の飛 跡検出を行っている。⁸Li原子核は放出電子のエネルギーが高いことにより、Multiple Scattering の効果が 小さく、更に FSI の影響が小さいことからこの原理の実験にとって最適な原子核であると言える。ここで、 FSI とはベータ崩壊における放出電子の終状態電磁相互作用のことであり、この効果によって標準理論内で R の値はノンゼロとなり、これが物理的な Background となる。

MTV 実験は 2008 年、KEK-TRIAC で初めて偏極⁸Liを用いた実験を行った[3]。2009 年からは統計精度の向上 を目指し、より親核の偏極度が高く、かつ高強度のビームを供給しているカナダの TRIUMF 研究所に移設し実 験を行っている。

Ⅱ. MTV 実験 Run-Ⅱ

2010年11月にMTV初の物理実験として行ったRun-IIではガス充填平面型検出器であるMWDCをメイン検出 器としていた[4]。MWDCは104本のアノードワイヤーを持つMulti Wire Drift Chamber であり、電子の飛跡

を Tracking するための高い位置分解能を持つ。Run-II では前 年のテスト実験で明らかになった問題点を解決すべく、いく つかのアップグレードを行った。具体的には MWDC の劣化した ワイヤーの張り替え、適切な充填ガスの選出、高速 DAQ シス テムの開発、更にデータ取得の効率化を図るための新たな電 子のエネルギー測定法の実装である。これらのアップグレー ドにより、全 2.5G のイベント、全 250M もの V-Track イベン トを得、世界一の統計記録を達成した。

Fig.1 Run-Ⅱにおける R 相関の統計精度

その後、これらのデータ解析を行い、最終結果を得るためのシステマティックの評価を行った。Run-IIにお けるシステマティックな効果は主に2つある。1つ目はMWDCの形状とBeta-Asymmetryが組み合わさること によって混入する偽のAsymmetryの効果(Gamma Fiducial)である。MWDCにおいてオフラインではこの効果を 消すことができないため、オフライン解析でこの効果を除去する必要があった。また、親核の偏極方向のズ レにより現れるN相関による偽のAsymmetryの評価を行った。そしてこれらのシステマティックを考慮した 上で最終的な系統誤差の評価を行い、MTV 実験初のPhysics Run でのR相関の最終結果を得た。

Ⅲ. MTV 実験 Run-IV

MTV 実験では 2011 年に次世代円筒型検出器 CDC (Cylindrical Drift Chamber) を新たに導入した。CDC は MWDC でボトルネックとなっていた N相関や Gamma Fiducial などのシステマティックを自身で消すことがで きる。更に MWDC に比べ読み出しチャンネル数が約4倍になったことや 有感領域が倍以上であることから統計精度の向上も期待できる。

Fig.2 Run-IV setup

更に一部のチャンネルではあるが CDC で V-Track イベントを観測することができた[5]。そして 2012 年 11 月に CDC を用いた初の物理実験に向けた最終性能評価実験 (Run-IV) を行った。Run-IVへ向けての具体的な R&D の内容は CDC 全チャンネルでの読み出しの実現、信号読み出しのエレクトロニクスや充填ガスの選定、また 新たな Trigger 用検出器の設計、実装である。更にこれまでの DAQ システムを一新し、FPGA モジュールのみ で Trigger、データ取得回路を実現させた新たな DAQ システムの開発、実装も行った。結果として、物理実 験であった Run-II の 100 分の 1 の Beam 強度であったのにも関わらず、Run-II に匹敵するレートで V-Track イベントを取得することができた。Run-IVでは来年度に予定されている物理実験のフルセットアップを実現 し、それに向けた十分な性能評価ができたと言える。

Fig.3 CDC における V-Track の様子と現在までの取得イベント数

[参考文献]

[1]J. D. Jackson et al., Phys. Rev. 106 (1957) 517

- [2]N. Sherman, Phys. Rev. 103 (1956)
- [3] H. Kawamura et al., RIKEN Accel. Prog. Rep. 43 (2010)
- [4]大西潤一, 立教大学理学研究科修士論文(2010)
- [5]中谷祐輔, 立教大学理学研究科修士論文 (2011)

超対称ゲージ理論と局所化

Supersymmetric Gauge Theories and Localization

長谷川 知香 指導教員 江口 徹

1 はじめに

本修士論文では、局所化の方法を用いて、超対称ゲージ理論における分配関数やWilson ループ演算子の期待 値などの物理量が厳密に計算できることについてレビューすることを目的とする。特に、N 枚重なった M2 ブ レーンの低エネルギー有効理論として知られる ABJM 理論の強結合領域での自由エネルギーを導出し、その振 る舞いが M2 ブレーンの自由度 ~ N³ と一致することを示す。

2 局所化の方法を用いた ABJM 理論における自由エネルギーの導出

局所化の方法とは、無限次元積分である経路積分を有限次元積分に帰着させることによって、積分を厳密に実行する方法の一つである。2007年に、局所化の方法を用いて、4次元球面上の $\mathcal{N} = 4$ 超対称ゲージ理論のWilson ループ演算子の期待値が計算された [1]。2008年に、N枚重なったM2ブレーンの低エネルギー有効理論として、3次元 $\mathcal{N} = 6$ 箙型超対称 Chren-Simons 理論(ABJM 理論)が提唱された [2]。2009年に、[1]で用いられた局所化の方法に基づいて、3次元球面上の Chern-Simons-matter 理論の分配関数(無限次元積分)が行列積分(有限次元積分)に帰着されることが示された [3]。2010年に、[3]の結果を3次元球面上の ABJM 理論に適用することによって分配関数が求められ、強結合領域での自由エネルギーを計算することにより、M2ブレーンの自由度の振る舞い ~ $N^{\frac{3}{2}}$ が導出された [4]。ただし、ABJM 理論の重力双対はIIA 型超弦理論であり、IIA 型超弦理論は強結合領域において M 理論。公式であることから、強結合領域において ABJM 理論であり、IIA 型超弦理論は強結合領域において M 理論の分配関数が、世界面インスタント効果を除けば全種数の寄与を足し上げられて Airy 関数となることが示され、強結合領域での Airy 関数の漸近的振る舞いから、同じく ~ $N^{\frac{3}{2}}$ が確認された [5]。2011年に、[4]の方法とは異なる方法である Fermi 気体の方法を用いて ABJM 理論の自由エネルギーが求められ、それに[5]の結果と整合性があった [6]。このように、ABJM 理論の強結合領域での自由エネルギーが2 通りの方法で求められ、それぞれ自由エネルギーから M2 ブレーンの自由度 ~ $N^{\frac{3}{2}}$ が導出された。

3 おわりに

局所化の方法を用いて得られる他の厳密な結果について言及し、局所化の方法の有用性および M 理論の進展 について述べる。

参考文献

- V. Pestun, "Localization of gauge theory on a four-sphere and supersymmetric Wilson loops," Commun.Math.Phys. **313** (2012) 71-129 [arXiv:0712.2824 [hep-th]].
- [2] O. Aharony, O. Bergman, D. L. Jafferis, J. Maldacena, "N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals," JHEP 0810, 091 (2008) [arXiv:0806.1218 [hep-th]].
- [3] A. Kapustin, B. Willett, I. Yaakov, "Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter," JHEP 1003, 089 (2010) [arXiv:0909.4559 [hep-th]].
- [4] N. Drukker, M. Marino, P. Putrov, "From weak to strong coupling in ABJM theory," Commun.Math.Phys. 306, 511-563 (2011) [arXiv:1007.3837 [hep-th]]
- [5] H. Fuji, S. Hirano, S. Moriyama, "Summing Up All Genus Free Energy of ABJM Matrix Model," JHEP 1108, 001 (2011) [arXiv:1106.4631 [hep-th]]
- [6] M. Marino, P. Putrov, "ABJM theory as a Fermi gas," [arXiv:1110.4066 [hep-th]]

不安定核分解反応測定のための広ダイナミックレンジ増幅回路開発

Development of an Amplifier Integrated Circuit with Wide Dynamic Range for the Measurement of Break-up Reactions of Unstable Nuclei

詫間晃

指導教員 栗田和好

1. 背景

現在理化学研究所・仁科加速器研究センターでは、RIビームファクトリー(以下 RIBF とする。)と呼ばれる加速器施設が存在する。RIBF では水素からウランまでの全元素、約4000種類の不安定核を世界最大強度のビームとして生成可能であり、それら不安定核の性質を調べている。現在 RIBF では特に中性子数が陽子数に比べて極端に多い中性子過剰な不安定核に着目して研究を行っている。

SAMURAI は RIBF の実験施設の一つであり、不安定核の反応で生じる多種多様な粒子を識別し、運動量、エ ネルギーを測定する大立体角粒子磁気分析装置である。RIBF 内の RI ビーム発生施設によって誕生した特定 の種類の不安定核を標的原子核(鉛)に接近させクーロン分解法を用いることで、陽子または中性子と重粒 子を作り出す。クーロン分解法とは高速の原子核を鉛のような電荷の大きな原子核が作る電場に通過させる ことで、その原子核を励起あるいは分解する手法である。得られた粒子を SAMURAI で測定することで、不安 定核分解反応によって生じた全ての粒子を広い範囲で精度よく同時に運動学的に把握することが可能である。

2. 目的

SAMURAIを使い我々が行う予定の不安定核分解反応実験では検出器に入射する粒子の電荷数 Z が 1 から 50 くらいの範囲に分解する。[1][2] これらの粒子を識別するために、SAMURAIの一部であるシリコンセンサー に粒子を通過させてそのエネルギー損失を測定する。本実験ではベーテーブロッホの公式よりエネルギー損失 は通過する原子核の電荷数の二乗に比例するのでパイルアップを考慮すると 1 から 10⁴のスケールの大きさ の信号がシリコンセンサーから出力され、それを読み出す回路が必要である。しかし、そのような信号を扱 える広いダイナミックレンジを持った増幅器及び ADC が存在しないため、これを可能にするような読み出し 回路の開発に着手した。[3]

3. 原理

クーロン分解法により、シリコンセンサーには陽子と重粒子が同時に入射されるので製作する読み出し回路の特性は以下の三つを満たす必要がある。電荷が小さい場合でもノイズに埋もれないこと、最大の電荷において出力信号電圧が飽和しないこと、ΔZ=±1の分解能を持つこと。また、入射粒子の電荷数 Z とシリコンセンサーで得られるエネルギー損失、読み出し回路への信号電圧 V の間には式(1)が成り立つ。

 $Z^2 \propto \angle E \propto V$ (1)

従って、今回はサイズ縮小のためASICを使用して、コンパレータとスイッチを組み合わせて、入力電圧に対 して出力が擬似的に平方根に比例する回路を製作した。この特性ならば三つの仕様を全て同時に満たす事が 可能であり、区別したい Z がすべての範囲で等間隔に並ぶことになる。この回路の利点は、少ない折れ線近 似によって Gain カーブを平方根に近似させたことにより校正を容易にしたことである。また、Gain カーブ の変極点は設計時に任意に選択出来るようにした。以下我々が開発した回路をルートゲインアンプと呼ぶ。

4. ルートゲインアンプ

Fig. 1. は設計したルートゲインアンプの回路図で ある。この回路は variable feedback amplifier、 inverter、analog adder の三つから成り立っている。 variable feedback amplifier はルートゲインを作り 出す部分で、inverter は信号の極性を反転させ、 analog adder は信号に DC オフセットを加えている。 以下にそれぞれの機能の詳細を示す。

variable feedback amplifier では入力パルスの波 Fig. 1. Diagram of square root amplifier 高 V_{in} が増加するにつれて、ネガティブフィードバックが増加し利得が減少するようになっている。具体的に はある閾値 V_{THI} 及び V_{THI} を設定し、 V_{in} の値が各閾値を上回るとコンパレータが起動しスイッチを turn on さ せる。すると、フィードバック抵抗が並列に接続され利得が減少するという仕組みである。また、 V_{clip} は信 号の極性が負になった際に利得を減少させ発振を防ぐ役割を担っている。

出力パルスの波高を Vout とすると、 Inverter 及び analog adder では variable feedback amplifier によって得られた V_{in}-V_{out}特性の不連続性を各コンパレータの起動点で V_{0ffset1}及び V_{offset2}を加えることによって解消している。最終的には回路の *V_{in}-V_{out}*特性は Fig. 2. の直線のようになる。(実際の信号の極性 は負である。)

5. 性能評価

我々は理論値を式(2)とし、設計値を式(3)、(4)、(5)のよう に設定した。Fig. 2. よりこれらの式を連立することにより、Vmn、 V_{TH2}、V_{offset1}及び V_{offset2}は算出される。

(2)

 $V_{out} = -1.5\sqrt{V_{in}}$

区間 1 : (0<V_{in}<V_{TH1}) (3) $V_{out} = -6.3V_{in}$ 区間 2: (V_{TH1}<V_{in}<V_{TH2}) (4) $V_{out} = -1.2V_{in} + V_{Offset1}$ (5)

区間 3 : (V_{TH} V_{in} 2.5) $V_{out} = -0.54V_{in} + V_{Offset2}$

完成した IC の性能評価を行うため、パルサーを用いて想 定される入力パルス(Rise time 100ns Decay time 5µs)を 作り出しオシロスコープで Vin-Vout 特性を確認した。Fig. 3. は完成した IC とそのテストボードである。Fig. 4. は各区間 内での出力パルスの様子である。Fig. 4. から分かるように、 コンパレータの起動点でスパイクが発生している。これは、 コンパレータの起動時間と DC オフセットを加える時間が異 なる事が原因である。そこで我々は IC の後段に積分回路を 導入し、スパイクを解消させた。尚、積分回路の利得は4で ある。Fig. 5. からスパイクは十分消失したと判断出来る。

6. 結論

理論値と設計値と実験値の関係は Fig. 6. のようになった。 (値は全て絶対値である。) また出力電圧は入力電圧が 0.23mVから2.5Vの範囲において検出され、ダイナミックレ ンジ 10000 以上を達成した。実験値は全体的に設計値に十 分近く、我々が開発した IC は十分な性能を持っていると言 えるであろう。今後は実際の SAMURAI 実験に導入するにあ たり、外部から与える電圧を IC 内部に取り込む等、より実 用的なものに ICをアップデートしていく必要があるだろう。

7. 参考文献

- [1] Toshiyuki Kubo.: "In-flight RI beam separator BigRIPS at RIKEN and elsewhere in Japan" Nucl. Instr. Meth. B204, 97 (2003).
- [2] Y. Shimizu et al.: "SAMURAI Project at RIBF" Journal of Physics, Conference Series, 312, 052022 (2011).
- [3] Yusaku Katayose et al.: "High-dynamic range readout system using dual APD/PD for the CALET-TASC" Proceedings of 32ND INTERNATIONAL COSMIC RAY CONFERENCE, Beijing 2012

Fig. 2. The relationship between a specific voltage values

Fig. 3. The photograph of test board

Fig. 4. The output of the region 1, 2, 3 at the input pulse height, (a) : for the input pulse height of 40 mV. (b) : for the input pulse height of 400mV, (c) : for the input pulse height of 2.5V

Fig. 5. Disappearance of the spike at the input pulse height of 2.5V

惑星観測を目指した極周回成層圏望遠鏡の開発

Development of a Circumpolar Stratospheric Telescope for Planetary Observations

山元夢摘

指導教員 田口 真

1. はじめに

今日、人工衛星や地上からの光学的リモートセンシングによって惑星観測がなされている。人工衛星 は高度な技術開発や巨額のコスト、そして失敗のリスクがある。また、地上からのリモートセンシング である大型望遠鏡はマシンタイムが限られており、数時間以上の時間を経て変化する現象を観測するこ とができない上、シーイングや天候条件によって観測が制限される。

これらの問題点を解決する第三の方法として成層圏望遠鏡による惑星観測が提案されている。地上から高度 32 km 付近の成層圏に観測機器を浮遊させて惑星観測するこの方法は、良好なシーイング下で広い波長範囲の観測が可能であり、特に極域での観測は 24 時間以上の長時間連続観測が可能である。

我々のプロジェクト及びゴンドラを「風神(FUJIN)」と命名した。気球実験の実施において最も重要 な気象条件である風の神様にあやかり、プロジェクトの成功と発展の願いが込められている。2012 年 8 月、北海道の大樹航空宇宙実験場にてシステム性能を確認するために開発されたゴンドラ FUJIN-1 の気 球実験が予定されていたが、上空風が放球条件を満たさず延期された。本論文において、FUJIN-1 シス テム及びその観測で得られると予想される惑星画像データの自転軸の傾き算出方法を述べる。

2. FUJIN-1 システム

ゴンドラの外観と各サブシステ ムの配置を Fig.1 に示す。FUJIN-1 開発の主要な技術課題の1つが、フ ライト中のゴンドラ姿勢制御と望遠 鏡の目標天体へのポインティング制 御である。FUJIN-1 では制御を3段 階に分けて徐々に精度を上げる3段 階指向制御系を採用した。3段階ポ インティングシステムの概念を Fig.2 に示す。第1段階制御ではサ ンセンサーを用い、気球とのデカッ

Fig. 1. FUJIN-1 外観写真(左)及びサブシステムの配置(右)。

プリング機構とコントロールモーメントジャイロを用いてゴンドラを太陽方向に指向させる。第2段階 制御では望遠鏡に同架したスターセンサーを用いて、経緯台で目標天体を望遠鏡視野内に導入・追尾す る。最後に、第3段階制御では目標天体位置を視野の中央に維持するために光電子増倍管によって検出 された星像位置を用いて光路中に入れた2軸可動ミラーを制御する。

光学系は有効口径 300 mm、焦点距離 3000 mm のシュミットカセグレン望遠鏡を使用する。2 つの CCD カメラを用いて、それぞれ紫外(450 nm 以下)および近赤外(750 nm 以上)で撮像する。電源は太陽電池 から供給し、過不足分はリチウムイオン電池が充放電する。別にヒーター用にニッケル水素電池を搭載 する。観測データは搭載メモリに記録され、実験後に回収される。HK データ及びアナログビデオ信号は リアルタイムで地上に降ろされる。

Fig. 2. 3段階姿勢制御・追尾システム。

3. 惑星画像マッピングプログラム

観測で得られた惑星画像を解析する上で補足データが重要になる。特に得られた惑星画像に経緯度線 及び明暗境界線を補うことで連続して得られた惑星面現象の惑星表面座標での位置を特定でき、金星大 気のスーパーローテーションなど、惑星の謎の解明に繋がると考える。

惑星観測の際に得られる情報から惑星の自転軸を算出するプログラムを IDL と SPICE を用いて作成した。Fig. 3 は 2012 年 7 月 27 日 14:32:43 UT に大樹航空宇宙実験場において FUJIN-1 が捉えた金星画像である。Fig. 4 は Fig. 3 の金星が撮像された際の時刻、位置、FUJIN-1 の姿勢情報を元に求めた金星自転軸等の情報を、神山氏の作成したプログラムに与えることで経緯度線、明暗境界線をマッピングした金星模擬画像である。

Fig. 3. 2012 年 7 月 27 日 14:32:43 UT に 北海道大樹航空宇宙実験場で撮像 された近赤外金星画像。

Fig. 4. Fig. 3 の金星画像撮像時と同じ条 件下で、経緯度線と太陽光照射面を 再現した金星模擬画像。

4. FUJIN-2 による観測計画

北極域での本格観測を目指して FUJIN-2 システムを開発している。基本的原理は FUJIN-1 と同様で、 望遠鏡は口径 400 mm のカセグレンタイプにアップグレードされる。早ければ 2014 年にスウェーデン・ キルナにおいて金星をターゲットとした 2 日間程度の気球実験を計画している。

[参考文献]

- [1] Taguchi, et al., 宇宙航空研究開発機構研究開発報告 JAXA-RR-09-007, 53-72, 2010-03.
- [2] Nakano, et al., International Space Conference of Pacific-basin Societies AAS J-007, 2012.

すざく衛星による低質量 X 線連星パルサー GX 1+4 の観測 Suzaku Observation of the Low Mass X-ray Bainary Pulsar GX 1+4

吉田裕貴 指導教員 北本俊二

1. 序論

GX 1+4 は銀河中心方向にある自転周期 110-160 s の X 線連星パルサーであり、M6III 型巨星と中性子星との低質 量 X 線連星系を成す。その可視光スペクトルには、低温の M 型巨星の特徴である吸収線と、高温星の特徴である強 い輝線の両方が見られ、共生 X 線連星と呼ばれる。またスピン周期に対応したパルスプロファイルには幅の狭い dip が在り、中性子星表面付近からの放射が中性子星へ磁力線に沿って降着する物質により散乱されるためと解釈されて いる。1970 年代は自転周期が徐々に短くなっていく状態 (スピンアップ)にあったが、1980 年代後半以降は一転し て、自転周期が長くなっていくスピンダウンの状態に転じた。このときケプラーの法則に従う回転速度と中性子星の 自転速度が同じ半径 (共回転半径) と磁場の圧力と物質の降着するガスの圧力が釣り合う半径 (アルフヴェン半径) が 等しくなったと仮定すると中性子星の表面磁場強度 B が 10¹³⁻¹⁴ G 程度になり、典型的な X 線パルサーがもつ磁場 の 10-100 倍になる。また X 線エネルギースペクトルは、大変大きな光電吸収と等価幅が約 200eV 程度の蛍光と考え られる鉄の K 輝線を示す。硬 X 線が卓越し 100keV 付近まで伸びている。

本研究では強磁場を持つという報告から、すざく衛星が観測した GX 1+4 のデータにより超強磁場中性子星マグネ ター ($B = 10^{14-15}$ G) との類似性、相違点を調査することで強磁場中性子星とマグネターとの分類する事を目的とす る。さらに中性子星への物質降着の様子について考察を行い、放射機構の解明を目的とする。

2. すざく衛星による観測

「すざく」衛星は、2005 年 10 月に打ち上げられた日本で 5 番目の X 線天文衛星である。すざく衛星は低高度軌道 周回により低バックグラウンドが実現され、X 線 CCD カメラ (X-ray Imaging Spectrometer; XIS) と硬 X 線検出 器 (Hard X-ray Detector; HXD) を合わせ 0.2-600 keV の広エネルギー帯域を高感度かつ高エネルギー分解能で観測 することができる。

すざく衛星は、2010 年 10 月 2 日から 10 月 4 日の間 GX1+4 を約 100 ks 観測した。XIS での観測は Normal モー ドに 1/4window モードを付加し、Spaced-raw Charge Injection を適用して観測した。さらに HXD-PIN,HXD-GSO でも同時に観測を行った。

Fig.1 Pulse profile of GX 1+4 obtained by the Suzaku observation. Background has been sub-tracted. The upper panel (A) shows profile in the 2.0-10.0 keV energy range and lower panel (B) shows in the 15.0-60.0 keV energy range.

Fig.2 Phase-resolved spctra($\phi = 0.45$ -0.65) of GX 1+4 obtained by the XIS and the HXD-PIN are shown in upper panel along with best-fit model components. Lower panel shows residuals from the best-fit model.

3. 位相別スペクトル解析

全観測時間の光度曲線を様々な周期で畳み込み、その畳み込んだ光度曲線が一定の仮定から最もずれる周期を最も 確からしい自転周期とした (folding search)。その結果パルス周期 *P* = 159.9445 ± 0.0002 [s] となった。XIS,HXD-PIN それぞれの光度曲線を得られたパルス周期で畳み込んだもの (パルスプロファイル) を図 1 に示す。2-10keV の パルスプロファイルには狭い範囲の減光、 15-60keV には比較的広い範囲の減光が確認できた。

図1の色別けで示した位相ごとのスペクトルを XIS.HXD-PINの データから抽出した。XIS のスペクトルは Self-Charge-Filling 効果 の補正を行った。2-60 keV のスペクトルに対し、星間吸収を考慮し た連続成分に鉄輝線を表すガウス関数を2本と鉄吸収端を表す関数 を加えたモデルで、連続成分をいくつかの異なる関数に変える事で データの再現を試みた。典型的なマグネターのスペクトルを近似す る黒体放射 (BB) とべキ関数 (PL) の重ね合わせではデータを再現 することができず、ベキ関数には 20 keV 程度の cutoff が必要な事 がわかった。図2に黒体放射と折れ曲がりのあるべき関数の重ね合 わせ (CPL) でパルス位相が $\phi = 0.45-0.65$ のスペクトルを近似し たときのデータと結果を示す。位相別スペクトル解析で求めたパラ メータを図3に示す。最も減光している位相で鉄輝線の等価幅(図 3(D;E)) が 400eV 程度と他の位相よりも有意に大きくなり、輝線の 強度 (図 3(B;C)) は他の位相とほとんど変わらなかったことから輝線 に対して連続成分が相対的に暗くなった事がわかる。減光は降着物質 により中性子星表面が隠されることに起因する、したがって 10 keV 連続成分は中性子星表面付近からの放射であり、輝線は中性子星表 面から離れた場所、降着円盤もしくはアルフヴェンシェルからの放

Fig.3 Model Paramaters of best-fit model (BB+CPL). Panels from (A) to (E) show center energy of Fe K α line (keV), photon flux of Fe K α $(10^{-3} \text{ photons s}^{-1} \text{ cm}^{-2}),$ line photon flux of Fe Kβ $(10^{-4} \text{ photons s}^{-1} \text{ cm}^{-2}),$ line equivalent width of Fe K α line (keV) and equivalent width of Fe $K\beta$ line (keV), respectively.

射であることを示唆する。さらにソフト成分、ハード成分それぞれの星間吸収量を補正した X 線フラックス (Unabs.Flux)の変動とパルスプロファイル、およびスペクトルとの整合性から、黒体放射の表す成分は中性子星 表面からの放射であり、折れ曲がりのあるベキ関数の示す成分が降着物質に散乱された成分であると推定した。

4. マグネターとの比較

Enoto et al. 2010 はマグネターのスペクトルを黒体放射でソフト 成分、ベキ関数でハード成分を再現しており、ベキ Γ に対するソフト 成分、ハード成分それぞれの Unabs.Flux の硬度比 ξ 、黒体放射の温 度 kT の相関を報告している。図 4 に GX 1+4 の位相別スペクトルを BB+PL と BB+CPL それぞれで近似したときの Γ,ξ,kT をマグネター の相関に合わせてプロットした。

BB+CPL の値はマグネターに見られた相関関係になく、一方で BB+PL の値は、マグネターの相関関係と同様の関係にあるように見 える。黒体放射の温度の比較するとマグネターの黒体放射の温度は、約 0.5 keV 程度であり、BB+CPL の黒体放射の温度は約 2 keV 程度で、 マグネターのスペクトルの黒体放射とは違う成分を表している事がわ かる。さらに BB+PL の黒体放射の温度は 6 keV 程度となり同様に違

Fig.4 Upper panel shows correlation between Γ and Hardness ratio ξ . Lower panel shows relation between Γ and kT.

う成分を表している事がわかった。またスペクトルに折れ曲がりの構造を持つ事も大きな違いである。以上の点から GX 1+4 は 10¹⁴G 程度の磁場を持つという報告はあるが、スペクトルからマグネターとの相違を指摘することがで きた。GX 1+4 はマグネターとは違い、伴星からの降着がエネルギー供給源であることからその放射機構は大きく違 うのであろう。

Study of time variability of Na atoms density in Mercury's atmosphere 水星大気中のナトリウム原子密度の時間変動に関する研究

大六隼人

指導教員 亀田真吾

1. 概要

水星は非常に希薄な大気を持っている。水星の大気成分には、水素、ヘリウム、酸素、ナトリウム、カリ ウム、カルシウム、マグネシウムがあるが、ナトリウムの大気光がこれまで最も多く観測されてきた。水星 大気中の原子は数時間しか水星表面に留まり続ける事が出来ないため、大気成分の散逸分は何らかの供給過 程によって常に補われ続けなくてはならない。供給過程として過去の研究から、太陽光照射による水星昼面 からの光励起脱離、太陽風イオンの衝突による水星表面からのスパッタリング、微小隕石の衝突による気化 の三つの現象が最も有力な供給過程であると考えられているが、最も支配的な供給過程はまだ解明されてい ない。先行研究には、高緯度域における局在や、存在量の日毎変動・数時間毎の変動等の特徴が確認されて いる。これらの特徴には太陽風イオンスパッタリングが寄与している可能性が高い。現在水星周回軌道上で 米国の探査機メッセンジャーが水星近傍の惑星間空間磁場(IMF)等の観測を行っており、本研究ではメッ センジャーで得られた水星近傍の IMF 変動から、水星表面に衝突する太陽風イオン星の時間変動を予測した。 そして、我々がメッセンジャーと同時に観測を行って得たナトリウム原子密度の時間変動と比較する事で、 太陽風イオンスパッタリングとナトリウム原子放出の相関関係を調べた。

2. 観測及び解析

水星は太陽に非常に近い惑星であるため、夜間の観測を行える時間は30分間程度しかない。これが水星大 気中のナトリウム原子の生成過程が解明出来ない大きな理由の一つである。そこで我々は、2011年12月30 日から2012年1月5日にハワイのマウイ島にあるハレアカラ山頂にて、主鏡40cmの反射望遠鏡と高分解能 分光器を用いて、最長で10時間の水星大気光の分光観測を行った。この際、太陽からの直接光が主鏡に当た

るのを防ぐため自作の遮光フードを望遠鏡の先端に取り付 けた。観測で得られるスペクトルは、水星大気光、表面反 射光、地球大気での太陽散乱光を合計したスペクトルであ る。そこで、観測で同時に得られた背景光を使って地球大 気での太陽散乱光のスペクトルを除去した。次に水星表面 反射光スペクトル(Fig.1 の点線)を計算から求めた。これ は太陽-水星間、水星-地球間の相対速度によって生じるド ップラーシフトを考慮し、太陽スペクトルを観測された表 面半反射光の強度に最小二乗法を用いて合わせる事で得た。 以上の方法で得られた表面反射光スペクトルを除去する事 で水星大気光のみのスペクトルを得た。

Fig.1 地球大気での太陽散乱光除去後の水星スペクトルと、計算から得られた表面反射光のスペクトル。

3. 結果

長時間連続して観測を行う事で、太陽風イオンが水星表面に衝突して ナトリウム原子を大量に生成し、原子密度の大きな変動を捉えられる可 能性が高くなる。さらにメッセンジャーで観測された水星近傍の IMF の時間変動から、我々が観測を行った時刻の、水星表面への太陽風イオ ン流入量の時間変動を予測する事が出来る。Fig.2はメッセンジャーで 観測された水星近傍の IMF の時間変動を表している。(矢印で示された 12 時間おきの高いピークは水星磁気圏の磁場強度である。)1 月 2 日 18:30(UT)頃から1月4日の20:00(UT)頃の連続した3時間ごとの平均 磁場強度は、定常状態時の連続した3時間の平均強度の2倍以上であっ た。よってこの期間、水星に多量の太陽風イオンが流入したと予測出来 る。(地球近傍でFig.3に示される様な大きな IMF 変動があれば太陽風 イオンの流入量はFig.4に示される様に大きく変動する。)Fig.5は我々

が観測したナトリウム原子密度の時間変動を表している。水星近傍の IMF の変動を検出したときにナトリウ ム原子密度の時間変動を観測したのは世界初である。もし多量の太陽風イオンが水星表面に衝突していたな ら、IMF の時間変動に応じたナトリウム密度の大きな変動が確認出来るはずである。しかし図からもわかる 通り我々の観測結果からは太陽風イオンの流入に伴った原子密度の大きな変動を捉える事は出来なかった。 また、数日後においても原子密度の大きな変動を確認する事は出来なかった。これは太陽風イオンスパッタ リング起源の生成過程はあまり支配的ではない事を示唆している。

Fig.5 2012年1月1日18:29(UT)から1月5日20:46(UT)の間に観測したナトリウム原子密度の時間変動。IMF の変動に伴った密度の増加を捉える事は出来なかった。